862 research outputs found

    Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling

    Full text link
    The recently discovered exoplanet Gl581d is extremely close to the outer edge of its system's habitable zone, which has led to much speculation on its possible climate. We have performed a range of simulations to assess whether, given simple combinations of chemically stable greenhouse gases, the planet could sustain liquid water on its surface. For best estimates of the surface gravity, surface albedo and cloud coverage, we find that less than 10 bars of CO2 is sufficient to maintain a global mean temperature above the melting point of water. Furthermore, even with the most conservative choices of these parameters, we calculate temperatures above the water melting point for CO2 partial pressures greater than about 40 bar. However, we note that as Gl581d is probably in a tidally resonant orbit, further simulations in 3D are required to test whether such atmospheric conditions are stable against the collapse of CO2 on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy & Astrophysic

    Coherent and incoherent bands in La and Rh doped Sr3Ir2O7

    Full text link
    In Sr2IrO4 and Sr3Ir2O7, correlations, magnetism and spin-orbit coupling compete on similar energy scales, creating a new context to study metal-insulator transitions (MIT). We use here Angle-Resolved photoemission to investigate the MIT as a function of hole and electron doping in Sr3Ir2O7, obtained respectively by Ir/Rh and Sr/La substitutions. We show that there is a clear reduction as a function of doping of the gap between a lower and upper band on both sides of the Fermi level, from 0.2eV to 0.05eV. Although these two bands have a counterpart in band structure calculations, they are characterized by a very different degree of coherence. The upper band exhibits clear quasiparticle peaks, while the lower band is very broad and loses weight as a function of doping. Moreover, their ARPES spectral weights obey different periodicities, reinforcing the idea of their different nature. We argue that a very similar situation occurs in Sr2IrO4 and conclude that the physics of the two families is essentially the same

    Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2

    Full text link
    We present a detailed comparison of the electronic structure of BaFe2As2 in its paramagnetic and antiferromagnetic (AFM) phases, through angle-resolved photoemission studies. Using different experimental geometries, we resolve the full elliptic shape of the electron pockets, including parts of dxy symmetry along its major axis that are usually missing. This allows us to define precisely how the hole and electron pockets are nested and how the different orbitals evolve at the transition. We conclude that the imperfect nesting between hole and electron pockets explains rather well the formation of gaps and residual metallic droplets in the AFM phase, provided the relative parity of the different bands is taken into account. Beyond this nesting picture, we observe shifts and splittings of numerous bands at the transition. We show that the splittings are surface sensitive and probably not a reliable signature of the magnetic order. On the other hand, the shifts indicate a significant redistribution of the orbital occupations at the transition, especially within the dxz/dyz system, which we discuss

    Inkjet-printed vertically emitting solid-state organic lasers

    Full text link
    In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically-emitting thin-film organic lasers, and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 uJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several um thicknesses are realized thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficient of 0.66 cm-1 at 550-680 nm. Standard laser dyes like Pyromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size " printed pixels " of 50 mm 2 present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50um x 50um AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost and can be used as fully disposable items. This works opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated

    Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2

    Full text link
    We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport measurements and Angle Resolved photoemission spectroscopy. We observe that Fe and Ru orbitals hybridize to form a coherent electronic structure and that Ru does not induce doping. The number of holes and electrons, deduced from the area of the Fermi Surface pockets, are both about twice larger than in BaFe2As2. The contribution of both carriers to the transport is evidenced by a change of sign of the Hall coefficient with decreasing temperature. Fermi velocities increase significantly with respect to BaFe2As2, suggesting a significant reduction of correlation effects. This may be a key to understand the appearance of superconductivity at the expense of magnetism in undoped iron pnictides

    ESR study of the single-ion anisotropy in the pyrochlore antiferromagnet Gd2Sn2O7

    Full text link
    Single-ion anisotropy is of importance for the magnetic ordering of the frustrated pyrochlore antiferromagnets Gd2Ti2O7 and Gd2Sn2O7. The anisotropy parameters for the Gd2Sn2O7 were measured using the electron spin resonance (ESR) technique. The anisotropy was found to be of the easy plane type, with the main constant D=140mK. This value is 35% smaller than the value of the corresponding anisotropy constant in the related compound Gd2Ti2O7.Comment: 8 pages, 3 figure

    Purely antiferromagnetic frustrated Heisenberg model in spin ladder compound BaFe2_2Se3_3

    Full text link
    The spin dynamics in the block magnetic phase of the iron-based ladder compound \bfs\ has been studied by means of single crystal inelastic neutron scattering. Using linear spin wave theory and Monte-Carlo simulations, our analysis points to a magnetic Heisenberg model with effective frustrated antiferromagnetic couplings only, able to describe both the exotic block order and its dynamics. This new and purely antiferromagnetic picture offers a fruitful perspective to describe multiferroic properties but also understand the origin of the stripe-like magnetic instability observed under pressure as well as in other parent compounds with similar crystalline structure

    Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma

    Get PDF
    Immunotherapy approaches for pancreatic ductal adenocarcinoma (PDAC) have met with limited success. It has been postulated that a low mutation load may lead to a paucity of T cells within the tumor microenvironment (TME). However, it is also possible that while neoantigens are present, an effective immune response cannot be generated due to an immune suppressive TME. To discern whether targetable neoantigens exist in PDAC, we performed a comprehensive study using genomic profiles of 221 PDAC cases extracted from public databases. Our findings reveal that: (a) nearly all PDAC samples harbor potentially targetable neoantigens; (b) T cells are present but generally show a reduced activation signature; and (c) markers of efficient antigen presentation are associated with a reduced signature of markers characterizing cytotoxic T cells. These findings suggest that despite the presence of tumor specific neoepitopes, T cell activation is actively suppressed in PDAC. Further, we identify iNOS as a potential mediator of immune suppression that might be actionable using pharmacological avenues

    Variational assimilation of Lagrangian data in oceanography

    Get PDF
    We consider the assimilation of Lagrangian data into a primitive equations circulation model of the ocean at basin scale. The Lagrangian data are positions of floats drifting at fixed depth. We aim at reconstructing the four-dimensional space-time circulation of the ocean. This problem is solved using the four-dimensional variational technique and the adjoint method. In this problem the control vector is chosen as being the initial state of the dynamical system. The observed variables, namely the positions of the floats, are expressed as a function of the control vector via a nonlinear observation operator. This method has been implemented and has the ability to reconstruct the main patterns of the oceanic circulation. Moreover it is very robust with respect to increase of time-sampling period of observations. We have run many twin experiments in order to analyze the sensitivity of our method to the number of floats, the time-sampling period and the vertical drift level. We compare also the performances of the Lagrangian method to that of the classical Eulerian one. Finally we study the impact of errors on observations.Comment: 31 page
    corecore