20 research outputs found

    A high-quality human reference panel reveals the complexity and distribution of genomic structural variants

    Get PDF
    Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    Get PDF
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait

    Characteristics of de novo structural changes in the human genome

    Get PDF
    Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (120 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations

    Skewed X-inactivation is common in the general female population

    Get PDF
    X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants

    Heterodyne Speckle Interferometer for Full-field Velocity Profile Measurements of a Vibrating Membrane by Electronic Scanning

    No full text
    Dynamic deformation measurements were carried out by combining full-field speckle interferometry and heterodyne interferometry. A digital demodulation technique based on the evaluation of the instantaneous frequency have been implemented in the digital signal processor of a complementary metal-oxide semiconductor (CMOS)-based camera to extract velocity measurements from phase modulated optical carrier signals. The purpose of this experimental investigation was to demonstrate a full-field laser vibrometer system that could replace electro-mechanical scanning with electronic scanning within a programmable stand-alone and relatively low-cost digital camera. Velocity profiles of a vibrating membrane in the order of few microns per second were reconstructed automatically by performing an electronic scanning of the surface over the image sensor.JRC.I.4-Nanobioscience

    EFFECT OF SIMULATED APPOINTMENT SCHEDULES ON THE OPERATIONAL PERFORMANCE OF A UNIVERSITY MEDICAL CLINIC

    No full text
    High patient wait times, physician idle times, physician overtimes, and patient congestion are common problems encountered in clinics that add to health care costs. This paper investigates the effect of different appointment systems on the operational performance of a university clinic. The process at a student health center was modeled using the Rockwell Arena® simulation software. Individual Block rule, Bailey rule, 3-Bailey rule, and the Two-at-a-time rule were compared using the simulation model to test their effect on performance parameters. The performance parameters were the provider measures and patient measures. The individual block rule was the most patient-friendly with the shortest patient measures. The 3-Bailey rule was the most provider-friendly rule, which resulted in the least provider times. A Kepner-Tregoe analysis shows that the Bailey rule was the most suitable as it had a good trade-off between the patient and provider times compared to the others

    Full-field heterodyne interferometry using a complementary metal-oxide semiconductor digital signal processor camera for high-resolution profilometry

    No full text
    We describe a heterodyne interferometry system based on a complementary metal-oxide semiconductor digital signal processor (CMOS-DSP) camera that is utilized for full-field optical phase measurement using a carrier-based phase retrieval algorithm, with no need for electro-mechanical scanning. Camera characterization test results support the adoption of a single-pixel approach to perform quasiinstantaneous differential phase measurements, which are immune to mechanical vibrations and thermal drifts. We developed an optical configuration based on a Mach-Zehnder heterodyne interferometer to perform a static test on a mirror surface. The profiles of the mirror surface set at two angular positions, the relative displacements in the range of nanometers, and the corresponding tilt angle were determined

    Gene expression profiling and association studies implicate the neuregulin signaling pathway in Behçet's disease susceptibility

    No full text
    © Springer-Verlag Berlin Heidelberg 2013Behçet's disease (BD) is a complex disease with genetic and environmental risk factors implicated in its etiology; however, its pathophysiology is poorly understood. To decipher BD's genetic underpinnings, we combined gene expression profiling with pathway analysis and association studies. We compared the gene expression profiles in peripheral blood mononuclear cells (PBMCs) of 15 patients and 14 matched controls using Affymetrix microarrays and found that the neuregulin signaling pathway was over-represented among the differentially expressed genes. The Epiregulin (EREG), Amphiregulin (AREG), and Neuregulin-1 (NRG1) genes of this pathway stand out as they are also among the top differentially expressed genes. Twelve haplotype tagging SNPs at the EREG-AREG locus and 15 SNPs in NRG1 found associated in at least one published BD genome-wide association study were tested for association with BD in a dataset of 976 Iranian patients and 839 controls. We found a novel association with BD for the rs6845297 SNP located downstream of EREG, and replicated three associations at NRG1 (rs4489285, rs383632, and rs1462891). Multifactor dimensionality reduction analysis indicated the existence of epistatic interactions between EREG and NRG1 variants. EREG-AREG and NRG1, which are members of the epidermal growth factor (EGF) family, seem to modulate BD susceptibility through main effects and gene-gene interactions. These association findings support a role for the EGF/ErbB signaling pathway in BD pathogenesis that warrants further investigation and highlight the importance of combining genetic and genomic approaches to dissect the genetic architecture of complex diseases.This research was supported by the Research Committee of the Tehran University of Medical Sciences (grant 132/714), the Portuguese Fundação para a Ciência e a Tecnologia (grant PTDC/SAU-GMG/098937/2008, doctoral fellowship SFRH/BD/43895/2008 to JMX, and a Ciência contract to SAO), and the Portuguese Instituto do Emprego e Formação Profissional (fellowship to JMX, TK, BVF).info:eu-repo/semantics/publishedVersio
    corecore