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Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diver-
sity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have re-
mained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250
families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a muta-
tion rate of 2.94 indels (I-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average
4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de
novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An ex-
cess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de
novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human
genome structure across generations.
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De novo structural changes in the human genome

Genomic mutations drive human evolution and phenotypic diver-
sity. Comparative genomics studies highlighted important small
base-level and large-scale differences between human and chim-
panzee genomes and noted a larger impact of segmental duplica-
tions compared to single nucleotide variations (SNVs) (Cheng
et al. 2005). Whereas interspecies comparisons provide us with in-
sight into long-range processes such as genetic drift and selection,
the information derived from direct measurements of the de novo
mutation spectrum and rates across generations is crucial for
understanding mechanisms of mutation formation and inter-in-
dividual differences (Scally and Durbin 2012). While several pro-
jects have started to investigate the rates and characteristics of de
novo SNVs (Kong et al. 2012; Michaelson et al. 2012; Francioli
et al. 2014; Besenbacher et al. 2015), those of de novo short inser-
tions and deletions (indels) and large structural variants (SVs) have
been much less studied (Campbell and Eichler 2013).

Copy number variations (CNVs) and SVs contribute substan-
tially to human genetic variation (lafrate et al. 2004; Sebat et al.
2004; Tuzun et al. 2005; Korbel et al. 2007), and the phenotypicim-
pact of CNVs may be larger than that of SNVs (Redon et al. 2006;
Stranger etal. 2007; Conrad et al. 2010). The impact of novel chang-
es in genome structure is further illustrated by their role in human
genetic disease (Stankiewicz and Lupski 2010; Cooper et al. 2011).
Copy number variations are widely studied and have been implicat-
ed in a variety of neurological disorders, such as autism (Sebat et al.
2007), schizophrenia (Walsh et al. 2008), and intellectual disability
(Cooper et al. 2011). Recent large-scale exome sequencing studies
have uncovered de novo SNVs and short indels causing various dis-
ease phenotypes, ranging from complex neurological disease to
rare Mendelian disorders (Veltman and Brunner 2012).

Given the significant contribution of de novo mutations to
human disease and evolution, studying genome-wide mutation
rates and patterns is important for understanding mutation ori-
gins, locating hotspots, estimating disease risk, and interpreting
novel disease-associated mutations. Here, we surveyed the entire
spectrum of de novo indels (1-20 bp) and SVs (>20 bp) in the
human population at nucleotide-resolution using whole-genome
sequencing data of 250 families from the Genome of the Nether-
lands (GoNL) Project (Boomsma et al. 2014; Francioli et al. 2014).

Results

Study design and variant detection

The Genome of the Netherlands Project includes 231 parent-off-
spring trios, 11 quartets with monozygotic (MZ) twins, and eight
quartets with dizygotic (DZ) twins, for a total of 258 genetically
distinct children. DNA material was obtained from peripheral
blood mononuclear cells to avoid problems with accumulated
somatic mutations routinely observed in DNA isolated from cell
lines (Londin et al. 2011). The medium coverage (14.5x median
sequence depth; 38.4x median physical depth) of paired-end
sequencing data combined with a family-based design enabled
the construction of a high-quality data set of genomic variation
(Francioli et al. 2014).

Indels (1-20 bp) were called using three different tools using
information from gapped reads and split-reads (Fig. 1; Methods).
We focused exclusively on variants that were detected only in a
single child by at least one tool with high confidence (Supplemen-
tal Table 1). We performed experimental validation assays for all
1169 candidate de novo indels in 110 children from 92 families
(11 quartets with MZ twin pairs, seven quartets with DZ twin pairs,
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Figure 1. Overview of study design. A total of 250 parent-offspring
families were sequenced at 14.5x coverage. De novo indel and structural
variant (SV) calling was performed using 11 algorithms combining
gapped reads, split reads, discordant read-pairs, and read depth ap-
proaches to cover the entire mutation size spectrum. All candidate indels
(1169 in 99 children) and SVs (601 in 258 children) were subjected to ex-
perimental validation, leading to 291 validated de novo indels and 41 de
novo SVs.

74 trios). We successfully resequenced 968 candidates in these
families, of which 291 indels (203 deletions, 74 insertions, and
14 complex indels) were confirmed as de novo events. All 31 de
novo indels validated in MZ twin pairs were concordant between
the two twins, showing that most of the mutations we report are
germline mutations. After validation, we randomly excluded one
of the twins from each MZ twin pair, leaving 99 children for de
novo indel analysis. We only focused on regions where we had suf-
ficient indel calling power by requiring at least four reads in the
child and 10 reads in each parent. Using these thresholds, a medi-
an of 77% of the genome was covered with a sensitivity of 93.2%
based on comparison of singletons in 11 twin pairs and 83.3%
based on comparison of singletons in deep-coverage whole-
exomes of 24 parents. This revealed a lower sensitivity for inser-
tions (92.6% based on twin comparison, 75.1% based on whole-
exome comparison) than for deletions (93.5% based on twin com-
parison, 87.4% based on whole-exome comparison).

Structural variants (>20 bp) were predicted by a selection of 11
tools that together use information from gapped reads, split-reads,
discordant read-pairs, and read depth to capture the full spectrum
of SV sizes and types (Fig. 1, Methods). We identified a total of 601
denovo SV candidates in the 258 GoNL offspring based on permis-
sive call settings and visual inspection using the Integrated
Genome Viewer (IGV) (Supplemental Table 1; Robinson et al.
2011). All candidates were subjected to experimental validation,
resulting in a final set of 41 confirmed de novo SVs ranging in
size from 20 bp to 327 kbp (Supplemental Figs. 1, 2). The de
novo SV set includes 27 deletions, eight tandem duplications,
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five retrotransposon insertions, and one complex interchromo-
somal event (that also involves a retrotransposon segment). We es-
timate the sensitivity of our calling for SVs sized 20-99 bp and SVs
larger than 100 bp to be 69.4% and 85.8% that of deep coverage
data, respectively. Further, nearly the complete genome (an aver-
age of 98.8% of the haploid genome excluding assembly gaps)
was covered by four or more read-pairs, a minimum threshold
for calling SVs in our data (Methods). The sensitivity for detection
of retrotransposon insertions was tested based on a previously pub-
lished set of validated variants and found to be 77.6% for hetero-
zygous retrotransposon insertions (Stewart et al. 2011). To
empirically estimate the sensitivity for calling large SVs (>100
kbp), we analyzed Illumina high-density SNP array data that
were generated for 57 families (Supplemental Table 2). We detect-
ed a single de novo deletion (113 kbp) in these data, which was al-
ready identified by whole-genome sequencing.

In total, we confirmed 332 de novo structural changes (291
indels of size 1-20 bp and 41 SVs larger than 20 bp), which were
used for downstream analyses (Fig. 2A; Supplemental Table 2).
All 332 de novo variations are uniquely present in a single individ-
ual in the GoNL cohort. We also examined the overlap with public
databases and found that three large SVs (>80% reciprocal overlap;
Database of Genomic Variants; 1000 Genomes Phase 1) and eight
rare indels (exact match; dbSNP build 142; allele frequency < 1.5%)
are overlapping, suggesting that these events might be recurring in
the population (Supplemental Table 2).

Indel and SV mutation rates

Previous estimates of the human indel mutation rate range from
0.53 to 1.5x107° per base per generation (Kondrashov 2003;
Lynch 2010; Campbell and Eichler 2013; Ramu et al. 2013;
Besenbacher et al. 2015). The mutation rate for copy number var-
iants was estimated to be 0.03 for CNVs larger than 500 bp (Conrad
et al. 2010) and 0.012 for CNVs larger than 100 kbp (Itsara et al.
2010) per haploid genome. Our data indicate a mutation rate of
0.68 x 1077 indel (1-20 bp) per base per generation and 0.08 SVs
(>20 bp) per haploid genome (or 0.16 SVs per generation). The
higher SV rates reported here in comparison to previous array

CGH studies result from greater power to interrogate the full size
range and spectrum of structural changes (Fig. 2A). For example,
when considering only CNVs larger than 500 bp or larger than
100 kbp, our data provide a rate of 0.041 and 0.0077 per haploid
genome, respectively. In addition, a substantial proportion (15%)
of the de novo SVs were retrotransposition events, allowing us to
empirically estimate the rate of retrotransposition in the popula-
tion to 0.023 (1/43) per generation. This is in line with estimates
based on diseased subjects and on comparative genomics studies
(Belancio et al. 2008; Burns and Boeke 2012).

Although the above de novo SV rate implies that only one in
seven children bears such a mutation, we found six offspring with
two and one with three de novo SVs (Supplemental Table 2). Such
co-occurrence of multiple SVs is unexpected under a uniform dis-
tribution of the 41 de novo SVs across the 258 children (P=
0.0074). One individual carries two de novo deletions (327 and
1.5 kbp) on maternal Chromosome 18 within a distance of 202
kbp of each other. This close placement of two de novo SVs is un-
likely to be random (P=1.35 x 10~%). Together, these data suggest
possible differences in the effects of environmental factors or the
vulnerability for acquiring de novo SVs per family (Conrad et al.
2011). We did not find evidence for a nonuniform distribution
of the de novo indels across offspring (P=0.061).

Elevated paternal mutation rates

Large-scale genome sequencing of families with disorders has
shown that most de novo SNVs have a paternal origin, with a signif-
icant increase of de novo mutation burden with paternal age
(Conrad et al. 2011; Kong et al. 2012; Michaelson et al. 2012;
Jiang et al. 2013; Francioli et al. 2014). In addition, the majority
of sporadic de novo CNVs and cytogenetically balanced genomic
rearrangements in patients with congenital disorders are paternal
in origin (Batista et al. 1994; Hehir-Kwa et al. 2011). However, it is
unclear whether this bias is also present for de novo SVs and indels
occurring in the general population. Using reads spanning neigh-
boring phase-informative polymorphisms, we assigned a parental
haplotype to 20% of the indels (39 paternal, 20 maternal) and
71% of the SVs (20 paternal, nine maternal). We observed a signifi-
cantly larger fraction (66.1%) of indels
and SVsarising on paternal chromosomes
than on maternal chromosomes (Pj,ge =

A —_ — B .
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Figure 2. Frequency of de novo indels and SVs. (4) Size-frequency distribution of 332 validated de  detection power between insertions and

novo indels and SVs identified in this study. In addition, the frequency of de novo SNVs is shown
(Francioli et al. 2014). The asterisk denotes a size bin containing one de novo tandem duplication and
six de novo retrotransposon insertions. (B) Bar plot indicating the numbers of de novo indels and SVs

on paternal and maternal haplotypes.

deletions. Toinvestigate the mechanisms
of formation of these indels, we catego-
rized their sequence contentand flanking
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Table 1. Indel classes and mechanisms
Possible
Class Example® Observations mechanisms Sequence features
Homopolymer run Ref. CTGAGGAAGAGTTT TTACA 21 insertions Polymerase Repeat context
De novo CTGAGGAAGAG- ACA 7 deletions slippage
Tandem repeats Ref. CTACCCCAGGCAGAGAGAGAAA 8 insertions Polymerase Repeat context
De novo CTACCCCAGGC----AGAGAAA 19 deletions slippage
Copy count changing Ref. CAGAAGG----TAGCTAGTCAG 37 insertions Polymerase Local copy count change
De novo CAGAAGGTAGCTAGCTAGTCAG 74 deletions slippage
Non-copy count changing Ref. CTAAAGGGCAGTCTTGCAAAAG 8 insertions NHEJ Blunt or microhomology
De novo CTAAAGGGCAG--TTGCAAAAG 90 deletions at breakpoints
Ref. AGTCAAAAACCAAAGTTTTGAA 8 deletions NHE]/hairpin loop Palindrome (>6 bp)
De novo AGTCAAAAACCA---TTTTGAA in surrounding
context (<20 bp)
Ref. GGGGAGAATTGAGACTTGATCA 5 deletions NHEJ/MMEJ/ Microhomology >4 bp
De novo GGGGAGAA------- TTGATCA replication at breakpoints
slippage
Complex Ref. ACTCACAAAAAAATT TTCC 2 variants Polymerase Repeat context
De novo ACTCACAAAAA-T CC slippage
Ref. CACATGGGCTTCC----- TGTC 8 variants SD-MME]J Palindromic or templated
De novo CACATGGGCTGGAGCCCATGTC TME]J insertion
Ref. CCAAAGTGCTGGGATTACAGGC 4 variants Unknown None

De novo CCAAAGTGCTC-GATTACAGGC

(NHEJ) Nonhomologous end joining, (MME]) microhomology-mediated end joining, (SD-MME]) synthesis-dependent microhomology-mediated end

joining, (TMEJ) theta-mediated end joining.

2All examples are chosen from observed validated de novo indels, and their positions are given with respect to the start of the variant on the human
reference genome build 37. In the “Example” column, “Ref.” denotes the ancestral allele and “De novo” the derived allele. Differences between the
ancestral and derived alleles are highlighted in bold. Repeats and palindromes are underlined with straight and wavy lines, respectively.

context (Table 1). Most of the de novo indels in our data (59.9%)
were found in repeat regions or resulted in local copy count chang-
es, meaning that the long allele can be obtained by copying part or
all of the short allele. More specifically, we found 28 indels in homo-
polymerruns (HR), 27 in tandem repeats (TR) and 111 indels result-
ing in a copy count change outside repeat regions (CCC). Copy-
count-changing indels show a relatively balanced deletion to inser-
tion ratio of 1.5:1. They likely arose through polymerase slippage, a
process by which the leading and lagging strand become mispaired
during DNA replication, causing a few bases to be duplicated or de-
leted. Although we confirm a strong enrichment for indels in ho-
mopolymer runs (P<2.2x107'%) and tandem repeats (P< 2.2 x

107'%) (Montgomery et al. 2013), they only represent 19.9% of
our observations. This is significantly less than what we observe
in polymorphic indels in our data (44.2%) and in previous reports
(46.0%) (Montgomery etal. 2013), possibly indicating low selective
pressures on these repetitive regions (Fig. 3A).

The remaining 40.1% of the de novo indels occurred in non-
repeat regions and did not lead to a copy count change (non-CCC).
These likely result from imperfect double-stranded DNA break re-
pairs by nonhomologous end joining (NHE]) which can create
indels at the repair junction. Their very high deletion-to-insertion
ratio of 12.9:1 supports their occurrence through NHE] (Hastings
et al. 2009). This provides a mechanistic explanation for the rela-
tive depletion of short insertions in the overall size spectrum of
de novo variation (Fig. 2A). We found palindromic sequences
(<20 bp away, >6 bp long) flanking eight of these deletions, sug-
gesting that a secondary structure such as a hairpin loop played a
role in their formation (Hastings et al. 2009; Montgomery et al.
2013). Another five non-CCC indels presented microhomologies

of at least 4 bp, possibly indicating emergence through microho-
mology-mediated end joining (MME]) (McVey and Lee 2008).

In addition to the 277 simple indels, we also identified 14
complex indels (Table 1; Fig. 3B; Supplemental Table 3) replacing
multiple bases (2-10 bp) by a different sequence (1-11 bp).
Although similar types of complex indels have been described pre-
viously (Levy et al. 2007), this class of variants has largely been ne-
glected in sequencing studies and is therefore absent from variant
repositories. As they represent 4.8% of the de novo indels in our
data, we speculate that this type of polymorphism may be relative-
ly common. Indeed, we found that 5.1% of inherited indels in the
GoNL samples seem complex. One of the difficulties posed by such
variation when studying polymorphisms is that they can be due to
a combination of multiple separate indels or SNVs or can occur as a
single complex variant. We provide here the first de novo observa-
tion of such variations in humans, showing that they indeed arose
as part of a single mutational event.

In contrast to simple indels, only two complex indels are lo-
cated in repetitive regions, indicating that polymerase slippage is
unlikely to be a major contributor to their formation. Strikingly,
five of them form palindromic repeats (>6 bp), a proportion signif-
icantly elevated when compared to simple insertions (P =0.0015).
The inserted bases for another three variants appeared to have
been templated from the neighboring sequence. Such palindromic
and templated complex indels have been reported in model organ-
isms around double-stranded break repairs through synthesis-
dependent microhomology-mediated end joining (SD-MME))
(Yu and McVey 2010) and theta-mediated end joining (TME])
(Roerink et al. 2014). The formation of these indels likely follows
a multistep process involving resection of break ends, hairpin

Genome Research 795
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on June 6, 2019 - Published by Cold Spring Harbor Laboratory Press

Kloosterman et al.

A J
04 De novo indels
[ inherited indels

© 0.3
[}
©
£
G
S 02-
S
o
Q.
o
o

0.1 - I

]

& o 4+
& & & © Na
& & ‘\'é‘\% N oo@
S K& & TSe
SRS oY S
& « CES O
< o S

o1}
-

. double-strand break at CGITA

5/CAAATGTGCTTCATTTCAAACGAGC
3’GTTTACACGAAGTAAAGTTTGCTCG

2.5 to 3’ resection

5/CAAATGTGCTTCATTTCAAACGAGC A 37
3’6 ATAAAATGGGTGGAGAGAAGT 5’

. snapback to form hairpin

5’CAAATGTGCT TCATZ), a3’
3@ CGAGCazC ATAAAATGGGTGGAGAGAAGT 5’

TATTTTACCCACCTCTCTTCA 3’
ATAAAATGGGTGGAGAGAAGT 5’

w

H

. limited synthesis (polQ?)

57CAAATGTGCT TCAT2), A 3’
3/GTTTACACGAGCazpC ATAAAATGGGTGGAGAGAAGT 5’

5. unwinding of hairpin
5/CAAATGTGCTTCATTTCAAACGAGCACATTT A 3/
3'G ATAAAATGGGTGGAGAGAAGT 5’
6. anneal at ATTT/TAAA microhomology
5’ CAAATGTGCTTCATTTCAAACGAGCACATTT A 37
3'G »TAAAATGGGTGGAGAGAAGT 5’

~

. tail clipping, fill-in synthesis and ligation

5/CAAATGTGCTTCATTTCAAACGAGCACATTTTACCCACCTCTCTTCA 3’
3/GTTTACACGAAGTAAAGTTTGCTCGTGTAAAATGGGTGGAGAGAAGT 57

Red = deletion Blue = new synthesis Green = insertion

Figure 3. Overview of de novo and inherited indel classes and their for-
mation mechanisms. (A) Proportion of de novo and inherited indels by
class. Inherited indels exhibit a 2.3-fold enrichment in indels located in ho-
mopolymer runs (HR) and tandem repeats (TR) when compared to de
novo indels, suggesting lower selective pressures in these regions. (B)
Outline of a plausible seven-step process that could account for the forma-
tion of a complex de novo indel by SD-MME/.

formation, microhomology-mediated annealing, and DNA syn-
thesis. Figure 3B shows an example of how a de novo complex
event we observed could have arisen through SD-MME].

SV formation

To obtain insights into the origin of de novo SVs in the general
population, we experimentally fine-mapped their breakpoints
at base-pair resolution and assigned a formation mechanism
(Fig. 4A; Supplemental Table 2; Lam et al. 2010). The majority
(N =24, 58.5%) of the SVs larger than 20 bp likely arose via nonho-
mologous repair (NHR) because their breakpoints presented
little or no homology (0-6 bp, N=19) or short inserted sequences
(1-18 bp, N=35). The breakpoints junctions of eight SVs (19.5%)

contained long homologous sequences (28 bp to 12 kbp) indi-
cating formation by homology-driven repair, and these are
classified as mediated by nonallelic homologous recombina-
tion (NAHR) (Supplemental Table 2). Three variants (7.3%) were
found within a region with a variable number of tandem repeats
(VNTR).

We also identified six de novo mobile element insertions
(14.6% of SVs), all short interspersed elements (SINE) retrotrans-
poson insertions of the AluY family (Supplemental Fig. 2; Sup-
plemental Table 2). The sequences of the breakpoint junctions of
the de novo AluY retrotransposon insertions all indicate the pres-
ence of target site duplications (TSD) of 3-16 bp and poly(A) tails
(Supplemental Fig. 2), both well-known signatures of retrotranspo-
son integration (Burns and Boeke 2012).

Remarkably, in one instance of interchromosomal integra-
tion, we found three breakpoint junctions leading to the joining
of two small DNA fragments—one from Chromosome 3 (163 bp)
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Figure4. Mechanisms contributing to the formation of de novo SVs. (4)
Overview of four SV formation mechanisms, including examples and ob-
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(B) Schematic structure of a complex de novo interchromosomal SV involv-
ing an insertion of DNA from Chromosomes 3 and 19 into Chromosome
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and another from Chromosome 19 (179 bp)—into Chromosome 4
(Fig. 4B). We propose that this complex rearrangement has also oc-
curred through retrotransposition, because the fragment from
Chromosome 19 contains part of an AluY element and no DNA
is lost at the original genomic positions of the inserted sequences.
Furthermore, the breakpoint on Chromosome 4 likely involved a
staggered cut with three overhanging nucleotides, which appear
as TSDs in the final product. The fragment on Chromosome 3 is
close (1.7 kbp) to the 3’ UTR of the PPARG gene. We hypothesize
that the fragment could represent a retrocopy of an RNA product
from this region, e.g., an elongated version of the PPARG mRNA
or another transcript.

We compared the proportion of de novo SVs derived from
each of four mechanisms with inherited SVs from the GoNL
Project. This revealed a larger proportion of mobile element inser-
tions (MEI, 40.8%, P=0.029) for inherited SVs and a lower propor-
tion of NHR (30.3%, P=0.0072), while similar proportions of
VNTR (10.5%) and NAHR (18.4%) mediated variants were found.
In addition, we compared the proportion of each SV mechanism
with those reported previously (Supplemental Table 4; Kidd et al.
2010; Pang et al. 2010, 2013; Mills et al. 2011) and found substan-
tial differences between studies, which probably reflect methodo-
logical differences (Pang et al. 2013).

Functional impact of de novo
structural changes

Although none of the de novo indels

with SNVs (Supplemental Methods). Consistent with recent stud-
ies involving families with disorders (Kong et al. 2012; Michaelson
et al. 2012; Jiang et al. 2013; Gilissen et al. 2014), an average of 45
de novo SNVs per child were detected in the GoNL Project
(Francioli et al. 2014). While the cumulative burden of de novo
indels was only 7.1 bp per child, we found that despite their lower
frequency, de novo SVs affected on average 4084 genomic bases
(Fig. 6A). This relatively large impact of SVs was also found in cod-
ing regions where an average of 28.6 coding bases per generation
were affected by de novo SVs, while only 0.55 coding bases per
generation were mutated by de novo SNVs (Fig. 6B). The larger
number of affected bases for SVs relative to SNVs is largely due to
their difference in size. We observed that, per offspring, 18 times
more genes are hit by de novo SNVs (0.55) versus SVs (0.03) (Fig.
6C). However, only 5% of de novo SNVs are potentially disruptive
(stop gained, stop lost, splice-site change), whereas 50% (4/8) of
the de novo SVs possibly have a major impact on gene structure
and function (Fig. 5).

Finally, we investigated differences in the genomic footprint
of de novo and inherited SVs and SNVs identified in the GoNL
data. We found that on average large de novo SVs (>20 bp) affect
90.6 times more genomic bases, 52.0 times more coding bases,
and 60.1-114.7 times more bases marked by histone modifications
than de novo SNVs (Fig. 6D). In contrast, inherited SVs affected on

overlapped with protein-coding exons, AS

in total six large de novo SVs (3.7-327
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onic duplications of BANKI (one exon),
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ing database from the Exome Aggrega-
tion Consortium (ExAC, http://exac.
broadinstitute.org) revealed that all of
them contain heterozygous loss-of-func-
tion mutations in the population. This
indicates that heterozygous changes in
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velopmental consequences. Mutations
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offspring carrying these de novo SVs ap-
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(aged 39 and 32).

Next, we compared the genomic
footprints of de novo SVs and indels

Figure 5.

HH

Effect of de novo SVs on protein-coding genes. (A) Deletion of six exons of PTPRM, resulting
in an in-frame shortened gene. (B) Deletion of one exon of LYN, causing an out-of-frame effect at the tran-
script level. (C) Deletion of eight exons of UBR5, causing an out-of-frame effect at the transcript level. (D)
Duplication of one exon of BANKT, possibly resulting in a premature stop. (E) Duplication of the entire
PROCT1 gene. (F) Duplication of three entire genes (GCNT3, GTF2A2, BNIP2). Duplications are shown
in green and deletions in red. (A) Ancestral allele, (D) derived allele.
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Figure6. Functionalimpact of de novo indels and SVs. (A) Average num-
ber of genomic bases affected by de novo SNVs, indels, and SVs per child.
(B) Average number of coding bases affected by de novo SNVs, indels, and
SVs per child. (C) Average number of genes affected by de novo SNVs,
indels, and SVs per child. The relative frequencies of the effects of the var-
iations on the gene are indicated. (D) Comparison of the footprint of de
novo (blue bars) and inherited (brown bars) large SVs (>20 bp) relative
to the footprint of SNVs. The footprint was computed genome-wide, in
protein-coding regions and genomic regions marked by H3K4mel,
H3K4me3, and H3K27ac based on data from the ENCODE Project (The
ENCODE Project Consortium 2007). The y-axis shows the ratio of the av-
erage number of affected bases per offspring relative to SNVs.

average only 1.6 times more bases when compared to inherited
SNVs. Altogether, these data demonstrate the overall impact of
de novo SVs on the genome when compared to de novo SNVs
and indels.

Discussion

The human genome continuously evolves as a result of mutation
and selection. Because of the relatively low rate of SV and indel for-
mation, large numbers of parent-offspring families are required
to capture the full spectrum of de novo changes that alter ge-
nome structure every generation (Campbell and Eichler 2013).
Moreover, the detection and genotyping of these variants remain
challenging given their diversity in both size and type (Alkan et al.
2011). Although limited by the short size of reads and the relative-
ly low coverage depth used in this study, we have provided a rep-
resentative picture of the landscape of de novo SVs and indels in
the human genome based on whole-genome sequencing of 250
families by leveraging multiple calling approaches.

Our work demonstrates that both de novo indels and SVs
originate primarily in the paternal germline, complementing
recent findings on de novo SNVs (Kong et al. 2012; Michaelson
et al. 2012; Francioli et al. 2014). We provide empirical esti-
mates for the rate of de novo SVs and indels across the com-
plete size spectrum, including relative frequencies of different
variant sizes and types. These rates define a baseline for the general
population and will help guide the interpretation of de novo
indels and SVs in the diagnosis of individual patients (Stankiewicz
and Lupski 2010). Roughly 15% of patients with intellectual
disability or congenital abnormalities harbor an apparently causa-
tive CNV, most of which occur de novo (Hochstenbach et al.
2011). Estimating the pathogenicity of these CNVs is based on
their overlap with known disease CNVs, protein-coding genes,
and control databases, but should also consider the background
rate of large CNVs as described here. Specifically, we find that
changes in gene structure—i.e., deletion or tandem duplication
of entire exons—occur at a rate of 1 in 43 offspring in the general
population.

In spite of their low frequency, large de novo SVs have a sub-
stantial impact on the genome. Due to their larger size, the average
genomic footprint of de novo SVs is much greater than that of
de novo SNVs, and they are much more likely to hit a coding
region. Indeed, 14.6% of the de novo SVs we observed affected ex-
ons, whereas only ~1.3% of the de novo SNVs did. The con-
siderable influence of de novo SVs is, however, primarily driven
by a limited number of de novo SVs altering multiple kilobases
of genomic sequence in a single generation. These rare but large
variants may be quickly removed from the population by purifying
selection, particularly when they hit genes or other important
genomic elements (Fig. 5; Conrad et al. 2010; Mills et al. 2011).
This may explain why inherited SVs and SNVs affect a similar
number of bases.

Previous studies have convincingly shown that large and dra-
matic genome changes introduced by large structural mutations
can be associated with a multitude of pathological conditions
(Stankiewicz and Lupski 2010). In this study, we demonstrate
that a broad range of de novo indels and structural variations is
also characteristic for individuals obtained from a general human
population.

Methods

Whole-genome sequencing and alignment

Genomic DNA from nucleated blood cells was obtained from
250 Dutch families (231 trios, eight quartets with DZ twins, and
11 quartets with MZ twins), which were selected without pheno-
typic ascertainment. Library construction and whole-genome
sequencing were performed using the Illumina HiSeq 2000 plat-
form (500-bp insert size, 90-bp paired-end reads).

Reads were aligned to the GRCh37/hg19 human genome ref-
erence using BWA 0.5.9-r164 (Li and Durbin 2009). We expected
that alignment to GRCh38 would not significantly alter our find-
ings, given that de novo variation is dependent on differences
between parental and offspring genomes. Aligned data were pro-
cessed following the Genome Analysis Toolkit (GATK) best practic-
es v2 (DePristo et al. 2011): Duplicate reads were marked using
Picard tools (http://picard.sourceforge.net), reads were realigned
around indels using GATK IndelRealigner, and base quality scores
were recalibrated using GATK BaseRecalibrator. Additional details
regarding the study design, sequencing, and alignment can be
found in Francioli et al. (2014).
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Detection of de novo variants

Indels were called using GATK UnifiedGenotyper (DePristo
et al. 2011) and Pindel (Ye et al. 2009), and all calls were further
genotyped with GATK HaplotypeCaller (Supplemental Methods).
We used GATK PhaseByTransmission (PBT) to call de novo vari-
ants from the GATK UnifiedGenotyper and HaplotypeCaller
calls using a mutation prior of 10~ per base per generation. We
kept calls with (1) no evidence of the nonreference allele in
the parents, (2) no nonreference allele called in any other GoNL
sample, (3) at least two reads supporting the nonreference allele
in the child, and (4) a PBT posterior of at least Q20. Pindel calls
with nonreference reads in the child only, and those with at least
two reads supporting the nonreference allele in the child and
no significant strand bias were kept as de novo candidates. All
putative de novo indels from either method were experimentally
validated in 92 of the families (including seven quartets with DZ
twin pairs).

De novo SVs were called and filtered independently by 11
algorithms based on the following approaches: gapped/split read
mapping (Pindel [Ye et al. 2009], GATK UnifiedGenotyper
[DePristo et al. 2011], GATK HaplotypeCaller); analysis of discord-
ant pairs (BreakDancer [Chen et al. 2009], 1-2-3-SV [http://tools.
genomes.nl/123sv.html; Kloosterman et al. 2011], Genome STRiP
[Handsaker et al. 2011], MATE-CLEVER [Marschall et al. 2013]);
and read depth analysis (CNVnator [Abyzov et al. 2011], DWAC-
seq [http://tools.genomes.nl/dwac-seq.html], FACADE [Coe et al.
2010]). In addition, Mobster was used to call de novo mobile
element insertions (MEIs) (Thung et al. 2014). For each algorithm
, variant calls confined to offspring of a single family but not de-
tected in any other GoNL samples were selected and visually eval-
uated with IGV (Robinson et al. 2011) to discard false positives
due to alignment artifacts. We then created a union of all remain-
ing calls by merging variants detected by multiple methods in
the same child based on SV type and overlapping coordinates.
We retained the most precise breakpoints for each variant based
on the calling algorithm (in order: split-read, discordant read-
pairs, read-depth). Local de novo assembly (SOAPdenovo [Luo
et al. 2012]) was used for breakpoint fine-mapping for SVs> 100
bp. A detailed description of the tools, settings, filtering, and vari-
ant calls, including sensitivity analysis, is provided in the Supple-
mental Methods.

Experimental validation

Oligonucleotide primers for amplification of a genomic segment
containing the variant (for mutations smaller than 100 bp) or var-
iant breakpoints (for larger SVs) were designed using Primer3
software (Supplemental Table 2). PCR products were resequenced
with Sanger, lonTorrent (Life Technologies), or MiSeq (Illumina,
2 x 250 bp) technologies. Genotyping of the resequenced variants
is described in the Supplemental Methods.

Parental origin

We used genotypes from phased haplotypes (Francioli et al. 2014)
to interrogate the parental origin of de novo indels and SVs. For
indels, we identified read-pairs containing both the de novo allele
and a phase-informative SNP allele.

Parental haplotypes for SVs were determined from allele ra-
tios at overlapping SNPs. Assignment to the paternal or maternal
haplotype was made if (1) one or more homozygous alleles in
the offspring are located inside a de novo deletion and could
only be inherited from one parent; (2) one or more polymorphic
SNPs in offspring are located inside a de novo duplication and

have a 2:1 (or 1:2) ratio with the reference allele and can be as-
signed unambiguously to either the paternal or maternal haplo-
type; (3) a SNP in the offspring was located within a discordant
read-pair supporting the de novo SV and could be assigned to ei-
ther the paternal or the maternal genome.

Paternal and familial biases

We tested for enrichment of de novo mutations on the paternal
haplotypes using a one-tailed binomial test and found that both
indels (P=0.0092) and SVs (P=0.031) were indeed enriched.
Additionally, we fit a linear model to the number of de novo indels
in the 99 independent offspring and the father’s age at concep-
tion, correcting for coverage, but did not find a significant associ-
ation (P=0.24).

We used a multinomial model with equal probability for each
child to receive a de novo variant to test for uniform distribution of
variants across children (goodness-of-fit P-value obtained using
100,000 Monte Carlo replicates).

In one sample, we observed two SVs occurring on maternal
Chromosome 18 at a distance of 201 kbp. We computed the prob-
ability of observing two independent deletions so closely located
by direct enumeration. Let E; and E, be the smaller and larger dele-
tion events, respectively, having respective lengths of L; and L,
bases. Neglecting edge effects at the ends of chromosomes, the
number of ways E; could be placed in the genome is (G— L, +1)
- (L1 +Lz—1), where G is the nominal genome size. The first
term represents the possible placements of E;, the second the num-
ber of placements that would result in the collapse of both events.
If D is the observed distance in bp between the two events, then
the number of the total placements that are significant is 2D, since
E; could be on either side of E,, implying a “two-sided” test. The
ratio of these two counts represents the tailed P-value. Given
G ~3x10°? and the observed values L; =1552, L, = 326,954, and
D=201,790, we find a P-value of 1.35 x 107*.

Computation of mutation rates

To compute the indel rate, we used validated de novo indels in
99 children from 92 families, including 11 quartets with MZ
twins, seven quartets with DZ twins, and 74 trios. We only used
one child from each of the MZ twin pairs and considered the 14
children from the seven DZ twin pairs as independent for this
analysis. Using permutations, we ruled out any correlation be-
tween siblings from a DZ pair (P=0.59). The rate was computed
as the sum of de novo indels divided by the sum of accessible bases
in the 99 children.

The SV rate was computed over 258 children from all 250
families. Only one child was considered for each of the MZ twin
pairs, and siblings from DZ twin pairs were considered as genetical-
ly independent with respect to de novo SVs. The rate was calculat-
ed by dividing the number of de novo SVs (N=41) by the 258
children times two transmitted haplotypes. We also report the
rate for de novo MEIs (N=6, including one interchromosomal
event which involved an AluY element) computed in a similar
fashion.

Indel and SV formation mechanisms

Indels were annotated using the classification proposed by
Montgomery et al. (2013), except for predicted hotspots (PR)
that we did not use since they were not readily available and com-
plex indels that are new in our data.

Analysis of mutation formation mechanisms of SVs was per-
formed using BreakSeq software v. 1.3 (Lam et al. 2010). See the
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Supplemental Methods for a full description of indel and SV
classification.

Data access

Sequence data have been submitted to the European Genome-phe-
nome Archive (EGA; https://www.ebi.ac.uk/ega/home) under ac-
cession number EGAS00001000644.
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