157 research outputs found

    AltitudeOmics: Red Blood Cell metabolic adaptation to high altitude hypoxia

    Get PDF
    Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia  through  the so-called  oxygen-dependent  metabolic  regulation,  which  involves  the competitive  binding  of  deoxyhemoglobin  and  glycolytic  enzymes  to  the  N-terminal  cytosolic domain  of  band  3.  This  mechanism  promotes  the  accumulation  of  2,3-DPG,  stabilizing  the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the  Bohr  effect.  Despite  in  vitro  studies,  in  vivo adaptations  to  hypoxia  have  not  yet  been completely elucidated. Within  the  framework  of  the AltitudeOmics  study,  erythrocytes  were  collected  from  21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following  reascent  after  7days  at 1525m.  UHPLC-MS  metabolomics  results  were  correlated  to physiological and athletic performance parameters. Immediate  metabolic  adaptations  were  noted as early as a few hours from ascending  to >5000m, and maintained for 16 days at high altitude.  Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory

    Combined FDG-PET/CT for the detection of unknown primary tumors: systematic review and meta-analysis

    Get PDF
    The aim of this study was to systematically review and meta-analyze published data on the diagnostic performance of combined 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in the detection of primary tumors in patients with cancer of unknown primary (CUP). A systematic search for relevant studies was performed of the PubMed/MEDLINE and Embase databases. Methodological quality of the included studies was assessed. Reported detection rates, sensitivities and specificities were meta-analyzed. Subgroup analyses were performed if results of individual studies were heterogeneous. The 11 included studies, comprising a total sample size of 433 patients with CUP, had moderate methodological quality. Overall primary tumor detection rate, pooled sensitivity and specificity of FDG-PET/CT were 37%, 84% (95% CI 78–88%) and 84% (95% CI 78–89%), respectively. Sensitivity was heterogeneous across studies (P = 0.0001), whereas specificity was homogeneous across studies (P = 0.2114). Completeness of diagnostic workup before FDG-PET/CT, location of metastases of unknown primary, administration of CT contrast agents, type of FDG-PET/CT images evaluated and way of FDG-PET/CT review did not significantly influence diagnostic performance. In conclusion, FDG-PET/CT can be a useful method for unknown primary tumor detection. Future studies are required to prove the assumed advantage of FDG-PET/CT over FDG-PET alone and to further explore causes of heterogeneity

    Year in review in Intensive Care Medicine 2009: I. Pneumonia and infections, sepsis, outcome, acute renal failure and acid base, nutrition and glycaemic control

    Get PDF
    Journal ArticleReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe

    FDG PET/CT in carcinoma of unknown primary

    Get PDF
    Carcinoma of unknown primary (CUP) is a heterogeneous group of metastatic malignancies in which a primary tumor could not be detected despite thorough diagnostic evaluation. Because of its high sensitivity for the detection of lesions, combined 18F-fluoro-2-deoxyglucose positron emission tomography (FDG PET)/computed tomography (CT) may be an excellent alternative to CT alone and conventional magnetic resonance imaging in detecting the unknown primary tumor. This article will review the use, diagnostic performance, and utility of FDG PET/CT in CUP and will discuss challenges and future considerations in the diagnostic management of CUP

    Improving rainfall quantitative estimates by combining microwave links of different lengths

    No full text
    corecore