2,474 research outputs found

    Structure and mechanical properties of the welded joints of large-diameter pipes

    Full text link
    The structure and mechanical properties of the technological welded joints of large-diameter pipes of strength class K60 produced by two companies are studied. Along with standard mechanical properties (σ0.2, σu, δ, ψ), specific work of deformation a (tensile toughness) and true rupture strength Sf are estimated from an analysis of the stress-strain diagrams constructed in true coordinates. The mechanical behavior is found to be different for samples cut from different zones of a welded joint (central weld, heat-affected zone, and base metal). The mutual correlation between parameters a, S f, and impact toughness KCV is considered. © 2013 Pleiades Publishing, Ltd

    A comparison of arbitration procedures for risk averse disputants

    Get PDF
    We propose an arbitration model framework that generalizes many previous quantitative models of final offer arbitration, conventional arbitration, and some proposed alternatives to them. Our model allows the two disputants to be risk averse and assumes that the issue(s) in dispute can be summarized by a single quantifiable value. We compare the performance of the different arbitration procedures by analyzing the gap between the disputants' equilibrium offers and the width of the contract zone that these offers imply. Our results suggest that final offer arbitration should give results superior to those of conventional arbitration.Natural Sciences & Engineering Research Council (NSERC) Discovery Gran

    Thermally Selective Formation of Subsurface Oxygen in Ag(111) and Consequent Surface Structure

    Get PDF
    A long-standing challenge in the study of heterogeneously catalyzed reactions on silver surfaces has been the determination of what oxygen species are of greatest chemical importance. This is due to the coexistence of several different surface phases on oxidized silver surfaces. A further complication is subsurface oxygen (Osub). Osub are O atoms absorbed into the near surface of a metal, and are expected to alter the surface in terms of chemistry and structure, but these effects have yet to be well characterized. We studied oxidized Ag(111) surfaces after exposure to gas-phase O atoms to determine how Osub is formed and how its presence alters the resultant surface structure. Using a combination of surface science techniques to quantify Osub formation and the resultant surface structure, we observed that once 0.1 ML of Osub has formed, the surface dramatically, and uniformly, reconstructed to a striped phase at the expense of all other surface phases. Furthermore, Osub formation was hindered at temperatures above 500 K. The thermal dependence for Osub formation suggests that at industrial catalytic conditions of 475 – 500 K for the epoxidation of ethylene-to-ethylene oxide, Osub would be present and is a factor in the subsequent reactivity of the catalysts. These findings point to the need for the incorporation of Osub into catalytic models as well as further theoretical investigation of the resultant structure observed in the presence of Osub

    Current state of forest mapping with Landsat data in Siberia

    Get PDF
    We review a current state of a forest type mapping with Landsat data in Siberia. Target algorithm should be based on dynamic vegetation approach to be applicable to the analysis of the forest type distribution for Siberia, aiming at capability of mapping Siberian forest landscapes for applications such as predicting response of forest composition to climate change. We present data for several areas in West Siberian middle taiga, Central Siberia and East Siberia near Yakutsk. Analysis of the field survey, forest inventory data was made to produce forest type classification accounting for several stages for forest succession and variations in habitats and landforms. Supervised classification was applied to the areas were the ground truth and inventory data are available, including several limited area maps and vegetation survey transects. In Laryegan basin in West Siberia the upland forest areas are dominated by mix of Scots pine on sandy soils and Siberian pine with presence of fir and spruce on the others. Abundance of Scots pine decreases to the west due to change in soils. Those types are separable using Landsat spectral data. In the permafrost area around Yakutsk the most widespread succession type is birch to larch. Three stages of the birch to larch succession are detectable from Landsat image. When Landsat data is used in both West and East Siberia, distinction between deciduous broad-leaved species (birch, aspen, and willow) is generally difficult. Similar problem exist for distinguishing between dark coniferous species (Siberian pine, fir and spruce). Image classification can be improved by applying landform type analysis, such as separation into floodplain, terrace, sloping hills. Additional layers of information can be a promising way to complement Landsat data

    MODERN INTERPRETATION OF DIAGRAMS OF LOADING OF SAMPLES UPON UNIAXIAL TENSION AND IMPACT BENDING

    Full text link
    The analysis of recent advances in obtaining and interpreting loading diagrams of steel samples of various compositions and in various structural.phase states is presented. The characteristic parameters and sections of the diagrams corresponding to various fracture mechanisms are determined.Приведен анализ последних научных достижений о получении и трактовке диаграмм нагружения образцов сталей различных композиций и в различных структурно.фазовых состояниях. Определены характерные параметры и участки диаграмм, соответствующие различным механизмам деформации и разрушения

    Atomic structure of dislocation kinks in silicon

    Full text link
    We investigate the physics of the core reconstruction and associated structural excitations (reconstruction defects and kinks) of dislocations in silicon, using a linear-scaling density-matrix technique. The two predominant dislocations (the 90-degree and 30-degree partials) are examined, focusing for the 90-degree case on the single-period core reconstruction. In both cases, we observe strongly reconstructed bonds at the dislocation cores, as suggested in previous studies. As a consequence, relatively low formation energies and high migration barriers are generally associated with reconstructed (dangling-bond-free) kinks. Complexes formed of a kink plus a reconstruction defect are found to be strongly bound in the 30-degree partial, while the opposite is true in the case of 90-degree partial, where such complexes are found to be only marginally stable at zero temperature with very low dissociation barriers. For the 30-degree partial, our calculated formation energies and migration barriers of kinks are seen to compare favorably with experiment. Our results for the kink energies on the 90-degree partial are consistent with a recently proposed alternative double-period structure for the core of this dislocation.Comment: 12 pages, two-column style with 8 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#rn_di

    Mitigation and screening for environmental assessment

    Get PDF
    This article considers how, as a matter of law and policy, mitigation measures should be taken into account in determining whether a project will have significant environmental effects and therefore be subject to assessment under the EU Environmental Impact Assessment (EIA) Directive. This is not straightforward: it is problematic to distinguish clearly between an activity and the measures proposed to minimise or mitigate for the adverse consequences of the activity. The issue is a salient one in impact assessment law, but under-explored in the literature and handled with some difficulty by the courts. I argue that there is an unnecessarily and undesirably narrow approach currently taken under the EIA Directive, which could be improved upon by taking a more adaptive approach; alternatively a heightened standard of review of ‘significance’, and within this of the scope for mitigation measures to bring projects beneath the significance threshold, may also be desirable

    On strongly chordal graphs that are not leaf powers

    Full text link
    A common task in phylogenetics is to find an evolutionary tree representing proximity relationships between species. This motivates the notion of leaf powers: a graph G = (V, E) is a leaf power if there exist a tree T on leafset V and a threshold k such that uv is an edge if and only if the distance between u and v in T is at most k. Characterizing leaf powers is a challenging open problem, along with determining the complexity of their recognition. This is in part due to the fact that few graphs are known to not be leaf powers, as such graphs are difficult to construct. Recently, Nevries and Rosenke asked if leaf powers could be characterized by strong chordality and a finite set of forbidden subgraphs. In this paper, we provide a negative answer to this question, by exhibiting an infinite family \G of (minimal) strongly chordal graphs that are not leaf powers. During the process, we establish a connection between leaf powers, alternating cycles and quartet compatibility. We also show that deciding if a chordal graph is \G-free is NP-complete, which may provide insight on the complexity of the leaf power recognition problem
    corecore