6,066 research outputs found

    Continuum reverberation mapping in a z = 1.41 radio-loud quasar

    Full text link
    Q0957+561 was the first discovered gravitationally lensed quasar. The mirage shows two images of a radio-loud quasar at redshift z = 1.41. The time lag between these two images is well established around one year. We detected a very prominent variation in the optical brightness of Q0957+561A at the beginning of 2009, which allowed us to predict the presence of significant intrinsic variations in multi-wavelength light curves of Q0957+561B over the first semester of 2010. To study the predicted brightness fluctuations of Q0957+561B, we conducted an X-ray, NUV, optical and NIR monitoring campaign using both ground-based and space-based facilities. The continuum NUV-optical light curves revealed evidence of a centrally irradiated, standard accretion disk. In this paper, we focus on the radial structure of the standard accretion disk and the nature of the central irradiating source in the distant radio-loud active galactic nucleus (AGN).Comment: 6 pages, 5 figures, Proceedings of The Central Kiloparsec in Galactic Nuclei-AHAR2011 Conference, to appear in Journal of Physics: Conference Series (2012

    Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies

    Full text link
    A significant asymmetry in baryon/antibaryon yields in the central region of high energy collisions is observed when the initial state has non-zero baryon charge. This asymmetry is connected with the possibility of baryon charge diffusion in rapidity space. Such a diffusion should decrease the baryon charge in the fragmentation region and translate into the corresponding decrease of the multiplicity of leading baryons. As a result, a new mechanism for Feynman scaling violation in the fragmentation region is obtained. Another numerically more significant reason for the Feynman scaling violation comes from the fact that the average number of cutted Pomerons increases with initial energy. We present the quantitative predictions of the Quark-Gluon String Model (QGSM) for the Feynman scaling violation at LHC energies and at even higher energies that can be important for cosmic ray physics.Comment: 21 pages, 11 figures, and 1 table. arXiv admin note: substantial text overlap with arXiv:1107.1615, arXiv:1007.320

    Procedimiento de preparación y materiales conformados basados en compuestos eutécticos binarios o ternarios de circonia

    Get PDF
    Referencia OEPM: P9600891.-- Fecha de solicitud: 19/04/1996.-- Titular: Consejo Superior de Investigaciones Científicas (CSIC).Procedimiento de preparación y materiales conformados basados en compuestos eutécticos binarios o ternarios de circonia. La presente invención está relacionada con la preparación de materiales con estructuras eutécticas micrométricas basados en mezclas de óxidos, conformados con dimensiones mili y submilimétricas mediante fusión zonal por láser con diferentes sistemas ópticos de focalización y control de los haces de los láseres. Su utilización es en el sector de la producción y conservación de energía, como elementos calefactores, refractarios, cátodos para plasmas de aire, electrodos, en componentes para celdas de combustión, microsensores de gas oxígeno, etc.Peer reviewe

    Correlation gap in the optical spectra of the two-dimensional organic metal (BEDT-TTF)_4[Ni(dto)_2]

    Full text link
    Optical reflection measurements within the highly conducting (a,b)-plane of the organic metal (BEDT-TTF)_4[Ni(dto)_2] reveal the gradual development of a sharp feature at around 200 cm as the temperature is reduced below 150 K. Below this frequency a narrow Drude-like response is observed which accounts for the metallic behavior. Since de Haas-von Alphen oscillations at low temperatures confirm band structure calculations of bands crossing the Fermi energy, we assign the observed behavior to a two-dimensional metallic state in the proximity of a correlation induced metal-insulator transition.Comment: 4 pages, 2 figure

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Chitosan membranes containing micro or nano-size bioactive glass particles : evolution of biomineralization followed by in-situ dynamic mechanical analysis

    Get PDF
    A newfamilyofbiodegradablepolymer/bioactiveglass(BG)compositematerialshas emergedbasedontheavailabilityofnano-sizedbioactiveparticles.Suchnovelbiocompo- sites canhaveenhancedperformance,intermsofmechanicalpropertiesandbioactivity, and theycanbedesignedtobeusedinboneregenerationapproaches. In thiswork,membranesofchitosan(CTS)andchitosanwithbioactiveglass(BG)both micron andnanosizedparticles(CTS/mBG,CTS/nBG,respectively)werepreparedby solvent casting.Microstructuralandmechanicalpropertieswereevaluatedinorderto compare theeffectsoftheincorporationofmicro(mBG) andnano(nBG)particlesinthe chitosan matrix. In vitro bioactivity testswereperformedtocharacterizetheapatitelayer that isformedonthesurfaceofthematerialafterbeingimmersedinsimulatedbodyfluid (SBF). Thebiomineralizationprocessonthebiomaterialswasalsofollowedusingnon- conventionaldynamicmechanicalanalysis(DMA),bothonlineandoffline.InsuchDMA experiments,thechangeinthestoragemodulus, E0, andthelossfactor,tan d, were measured asafunctionoftheimmersiontimeinSBF.TheresultsdemonstratedthatCTS/ nBG membranespossessenhancedmechanicalpropertiesandhigherbioactivityin comparisonwiththeCTS/mBG membranes.SuchresultssuggestthepotentialofnBGfor the developmentofbioactivecompositesforboneregenerationapplications.This work was financially supported by Foundation for Science and Technology (FCT) by the projects PTDC/QUI/69263/2006, PTDC/CTM-BPC/112774/2009 and, through the scholarship SFRH/BD/64601/2009 granted to Sofia G. Caridade. The authors acknowledge Dr D. Mohn and Prof. W. Stark (Em Zurich) for providing the nBG particles used

    Alternative symplectic structures for SO(3,1) and SO(4) four-dimensional BF theories

    Full text link
    The most general action, quadratic in the B fields as well as in the curvature F, having SO(3,1) or SO(4) as the internal gauge group for a four-dimensional BF theory is presented and its symplectic geometry is displayed. It is shown that the space of solutions to the equations of motion for the BF theory can be endowed with symplectic structures alternative to the usual one. The analysis also includes topological terms and cosmological constant. The implications of this fact for gravity are briefly discussed.Comment: 13 pages, LaTeX file, no figure

    Elastic pp Scattering at LHC Energies

    Full text link
    We consider the first LHC data for elastic pp scattering in the framework of Regge theory with multiple Pomeron exchanges. The simplest eikonal approach allows one to describe differential elastic cross sections at LHC, as well as pp and pˉp\bar{p}p scattering at lower collider energies, on a reasonable level.Comment: 11 pages, 5 figures, and 1 tabl
    corecore