1,440 research outputs found

    Anomalous population of 10^{10}He states in reactions with 11^{11}Li

    Full text link
    Structure with the lowest energy observed in the 10^{10}He spectrum populated in the proton knockout reaction with 11^{11}Li beam has a peak at 1.21.51.2-1.5 MeV. This peak is usually interpreted as a resonant 0+0^+ ground state of 10^{10}He. Our theoretical calculations indicate that this peak is likely to be a pileup of 11^-, 0+0^+, and 2+2^+ excitations with very similar shapes. %We predict a very specific nature of the 11^- excitation in 10^{10}He. Moreover, the ``soft'' 11^- excitation appears to be the lowest one in energy. Such an anomalous continuum response is traced to the halo structure of 11^{11}Li providing extreme low energy shift to all the expected continuum excitations. Competitions of the initial state structure (ISS) and the final state interaction (FSI) effects on the spectrum and three-body correlations in 10^{10}He are discussed. Analogous effect of the extreme low-energy shift could also be expected in other cases of 2n2n emitters populated in reactions with halo nuclei. Simplified example of the 10^{10}He spectrum in α\alpha knockout from 14^{14}Be, is given. We also discuss limits on the properties of 9^{9}He stemming from the observed 10^{10}He spectrum.Comment: 10 pages, 13 figure

    Two-proton radioactivity and three-body decay. V. Improved momentum distributions

    Get PDF
    Nowadays quantum-mechanical theory allows one to reliably calculate the processes of 2p radioactivity (true three-body decays) and the corresponding energy and angular correlations up to distances of the order of 1000 fm. However, the precision of modern experiments has now become sufficient to indicate some deficiency of the predicted theoretical distributions. In this paper we discuss the extrapolation along the classical trajectories as a method to improve the convergence of the theoretical energy and angular correlations at very large distances (of the order of atomic distances), where only the long-range Coulomb forces are still operating. The precision of this approach is demonstrated using the "exactly" solvable semianalytical models with simplified three-body Hamiltonians. It is also demonstrated that for heavy 2p emitters, the 2p decay momentum distributions can be sensitive to the effect of the screening by atomic electrons. We compare theoretical results with available experimental data.Comment: 13 pages, 18 figure

    Observable effects caused by vacuum pair creation in the field of high-power optical lasers

    Full text link
    We consider the possibility of an experimental proof of vacuum e+e- pair creation in the focus of two counter-propagating optical laser beams with an intensity of the order of 10^20 - 10^22 W/cm^2. Our approach is based on the collisionless kinetic equation for the distribution function of the e+e- pairs with the source term for particle production. As a possible experimental signal of vacuum pair production we consider the refraction of a high-frequency probe laser beam by the produced e+e- plasma to be observed by an interference filter. The generation of higher harmonics of the laser frequency in the self-consistent electric field is also investigated.Comment: 7 pages, 7 figures; typos corrected, Eq.(16) corrected, reference adde

    From Coulomb excitation cross sections to non-resonant astrophysical rates in three-body systems: 17^{17}Ne case

    Get PDF
    Coulomb and nuclear dissociation of 17^{17}Ne on light and heavy targets are studied theoretically. The dipole E1 strength function is determined in a broad energy range including energies of astrophysical interest. Dependence of the strength function on different parameters of the 17^{17}Ne ground state structure and continuum dynamics is analyzed in a three-body model. The discovered dependence plays an important role for studies of the strength functions for the three-body E1 dissociation and radiative capture. The constraints on the [s2]/[d2][s^2]/[d^2] configuration mixing in 17^{17}Ne and on pp-wave interaction in the 15^{15}O+pp channel are imposed based on experimental data for 17^{17}Ne Coulomb dissociation on heavy target.Comment: 12 pages, 13 figure

    Wildland fire propagation modeling: fire-spotting parametrisation and energy balance

    Get PDF
    Present research concerns the physical background of a wild-fire propagation model based on the split of the front motion into two parts - drifting and fluctuating. The drifting part is solved by the level set method and the fluctuating part describes turbulence and fire-spotting. These phenomena have a random nature and can be modeled as a stochastic process with the appropriate probability density function. Thus, wildland fire propagation results to be described by a nonlinear partial differential equation (PDE) of the reaction-diffusion type. A numerical study of the effects of the atmospheric stability on wildfire propagation is performed through its effects on fire-spotting. Moreover, it is shown that the solution of the PDE as an indicator function allows to construct the energy balance equation in terms of the temperature.PhD Grant "La Caixa 2014

    Wildland fire propagation modelling

    Get PDF
    Wildfire propagation modelling is a challenging problem due to its complex multi-scale multi-physics nature. This process can be described by a reaction- diffusion equation based on the energy balance principle. Alternative technique is the so-called level-set method (LSM), used in wildfire modelling as well as in many other fields. In the present study a methodology for fire propagation modelling that reconciles these approaches is proposed. This methodology is distinguishable and significant from both academical and industrial point of view because of the inclusion of the ran- dom effects by preserving the existing algorithms and direct implementation as a post-processing numerical routine. The random behaviour of the fire front is caused, for example, by the turbulence and the fire-spotting phenomenon. A probability density function (PDF) is employed in order to describe the random process. In earlier studies it has been shown that new independent ignitions can increase the rate of spread (ROS) of fire and therefore should be carefully studied. In this respect, a physical parametrization of the fire-spotting distribution was proposed. Special attention in the present study is paid to the atmospheric stability conditions. The parametrization proposed in previous works is completed by the multiple fire-spotting modelling. Afterwards special attention is paid to the study of uniqueness of the PDF and consistency with the energy balance equation. Numerical results and discussions complete the study.PhD grant ”La Caixa 2014

    Concurent multi-scale physical parametrization of fire-spotting: A study on the role of macro- and meso-scale characteristics of the system

    Get PDF
    The strong impact of wildfires in terms of lives and homes lost and of damage to ecosystems, calls for an urgent improvement in the risk management. The aim of the present research is the improvement of these software codes by proposing a complete physical characterization of fire-spotting within an approach that is ready to be implemented as a post-processing routine of standard outputs. The main feature of the proposed method is that the effects of random fluctuations are included in a way that preserves the existing structure of the operational and industrial codes and can be implemented directly. The operational code WRF-SFIRE have been used to test the proposed post-processing routine. Results show the suitability of the approach for simulating random effects due to turbulent convection and fire-spotting, which are cases not resolved by standard operational codes. Results of simulations including response analysis with test cases are shown and discussed.PhD grant "La Caixa 2014

    Numerical valuation of two-asset options under jump diffusion models using Gauss-Hermite quadrature

    Get PDF
    In this work a finite difference approach together with a bivariate Gauss–Hermite quadrature technique is developed for partial integro-differential equations related to option pricing problems on two underlying asset driven by jump-diffusion models. Firstly, the mixed derivative term is removed using a suitable transformation avoiding numerical drawbacks such as slow convergence and inaccuracy due to the appearance of spurious oscillations. Unlike the more traditional truncation approach we use 2D Gauss–Hermite quadrature with the additional advantage of saving computational cost. The explicit finite difference scheme becomes consistent, conditionally stable and positive. European and American option cases are treated. Numerical results are illustrated and analysed with experiments and comparisons with other well recognized methods.FP7-PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) Ministerio de Economía y Competitividad Spanish grant MTM2013-41765-
    corecore