47 research outputs found

    Pulsed Laser Deposition of BaTiO3 on PVDF substrate

    Get PDF
    Piezoelectric materials play an important role in development of advanced Micro-electromechanical systems (MEMS) and Nano-electro-mechanical systems (NEMS). Their applications span the aero-space industry, communications, defense systems, national security, health care, information technology and environmental monitoring. Materials used in MEMS/NEMS mustsimultaneously satisfy numerous requirements for chemical, structural, mechanical and electrical properties. Although traditionally MEMS in particular have relied on silicon, the materials used in MEMS/NEMS are becoming more heterogeneous. Taking into account that materials nanostructuring can produce unique mechanical, electrical and piezoelectric properties, in this article the investigation of pulsed laser deposition of BaTiO3 on PVDF substrate has been performed. The titanium-saphire laser operated at 800 nm with 40-fs pulse duration and 1 kHz repetition rate was focused onto a mechanically activated BaTiO3 target. Deposition on PVDF substrate was done at an oxygen partial pressure of 10-7 Torr using a laser pulse frequency of 1 kHz at room temperature. The crystal structure and the microstructure of the films were examined using an X-ray diffractometer and scanning electron microscope, while the surface morphology was observed by atomic force microscopy.It was found that pulsed laser deposition of BaTiO3 on PVDF substrate offers a new set of opportunities for development of advanced flexible piezo-films for the next generation of NEMS

    Piezoelectric polymer/ceramic nanostructures for mechanical energy harvesting

    Get PDF
    Vibration-based mechanical energy is one of the most accessible energy source in the surroundings. Harvesting this type of energy exhibits a great potential for remote/wireless sensing, charging batteries, and powering electronic devices. Piezoelectric and ferroelectric materials, including PZT, BaTiO3, ZnO, polyvinylidene fluoride (PVDF), etc., can be used for converting ambient mechanical energy into electricity. Based on these materials, a variety of micro- or nanoelectromechanical systems can be developed for harvesting energies from random vibrations, mechanical waves, or body movements like walking, running, or typing. Recent investigations on nanocomposites of electroactive ceramics and ferroelectric polymers exploit this approach in order to produce new multifunctional materials for mechanical energy harvesting. Taking into account that mechanical activation is one of the methods for modification of physico-chemical properties of the filler, in this study we investigate the influence of mechanical activation of ZnO particles on structural properties of ZnO/polyvinylidene fluoride nanocomposites. The nanocomposite films were prepared by solution casting method and investigated by X-ray diffraction (XRD) method and Raman spectroscopy, while the microstructure morphology has been analyzed by scanning electron microscope (SEM). Presented results will enable optimization of PVDF processing techniques for the production of new mechanical energy harvesting devices

    CORPORATE SOCIAL RESPONSIBILITY AND SUSTAINABLE DEVELOPMENT – INTERNATIONAL LEGAL FRAMEWORK FOR GOALS ACHIEVEMENT AND SOME THEORETICAL INSIGHTS

    Get PDF
    Achieving a sustainable development should be one of the top priorities for the whole society. However, achieving a sustainable development is a complex function of different economic, social, institutional, political and historical factors. By implementing the corporate social responsibility, companies contribute to a sustainable development of the entire social system. According to the fact that it is not entirely clear at the micro level what corporate social responsibility involves, and that most of the company-level social activities are voluntarily initiated, it is necessary the institutional bodies encourage socially desirable forms of corporate behavior and implement the legal framework to business obligations to elicit responsible business procedures. Though responsible corporate business is highly desirable, companies have to consider the fact that the corporate interests and corporate social responsibility will always be constrained by the profit-maximizing prerequisites and general economic circumstances

    Targeted Synthesis of Ceramic-Polymer Nanocomposites

    Get PDF
    It is well known that materials used in nano-electro-mechanical systems (NEMS) must simultaneously satisfy numerous requirements for chemical, structural, mechanical and electrical properties. Taking into account that the application of targeted synthesis principles is fundamental for development of these materials, in this article the results of the investigation of the nano-scale grain size effects, grain/particle size induced structural transformations, the evolution of the particle structure during targeted synthesis process and microstructure modeling of ceramic-polymer nanocomposites, has been presented. The nanocomposite BT,ST/PVDF films were prepared by pulsed laser deposition (PLD) method and investigated by X-ray diffraction (XRD) method and Raman spectroscopy, while the microstructure morphology has been analyzed by scanning electron microscope (SEM). It was found that PLD of BT,ST on PVDF substrate offers a new set of opportunities for development of advanced flexible piezo-films for the next generation of NEMS, which applications span the aero-space industry, communications, defense systems, national security, health care, information technology and environmental monitoring

    Synthesis and pharmacological evaluation of N-{4-[2-(4-arylpiperazin-1-yl) ethyl] phenyl}arylamides

    Get PDF
    Serotonin 5HT1a receptor belongs to a class of G-protein coupled receptors. It serves as a potential target for neurological disorders such as depression, anxiety etc. It is a well-known fact that N-arylpiperazine moiety is present in compounds with pronounced 5HT1a activity. Taking into account previously published results1 novel structures of N-{4-[2-(4- arylpiperazin-1-yl)ethyl]phenyl}arylamides (Figure 1.) were designed for target synthesis. Proposed modifications include: different position of hydroxyl group in aryl amide part of molecule and addition of methoxy and chloro substituents to the phenyl ring of parent compounds, since their introduction in the molecule leads to increased receptor affinity. New compounds were synthesized by acylation of N-arylpiperazines using 4- nitrophenylacetic acid. Obtained amides were converted in 1-(4-nitrophenethyl)-4- arylpiperazines using diborane in THF. Reduction of nitro compounds by Ra/Ni provided 1- (4-aminophenethyl)-4-arylpiperazines. Target arylamides were obtained by condensation 1- (4-aminophenethyl)-4-arylpiperazines with corresponding aryl acids in presence of propylphosphoric acid anhydride (PPAA) in DMF. All newly synthesized compounds were evaluated for their activity toward 5HT1a receptors by in vitro competitive displacement assay of [3H] 8-OH-DPAT. HEK cell line were used as a source of 5HT1a receptors. Introduction of 2-methoxy and 2,3-dichloro groups,as well as meta and para hydroxyl group in molecule resulted in increment of affinity toward 5HT1a receptors comparing to the parent compounds

    Design, synthesis and pharmacological evaluation of N-{4-[2-(4-aryl-piperazin-1-yl)-ethyl]-phenyl}-arylamides

    Get PDF
    5HT1A receptor targeting drugs have been used as the treatment for the many neuropsychiatric disorders, such as schizophrenia and depression. As a part of ongoing research, we designed series of new compounds that share arylpiperazine common structural motif with the 5HT1A receptor ligand aripiprazole. Receptor-ligand interactions were determined by the molecular docking simulations, revealing the positive impact of the phenyl substitution in the arylpiperazine part of the molecules. Nine selected compounds were synthesized in four reaction steps in high overall yields (59-73%). In vitro pharmacological evaluation of the synthesized compounds revealed three compounds (5b, 6b and 6c) with high 5HT1A binding affinity, comparable with aripiprazole (Ki 12.0, 4.8, 12.8, 5.6 nM, respectively). Compounds from b series, 5b and 6b, possess 2-methoxyphenyl substituents, while 6c possess 2,3-dichlorophenyl substituent in the arylpiperazine part of the molecule. The pharmacological results are therefore in accordance with the molecular docking simulations thus proving the rational design. Compounds 5c, 6b and 6c can be considered as the candidates for further evaluation as new, potential antidepressants

    Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The St John's Wort (<it>Hypericum perforatum</it>; Clusiaceae) has been used in traditional and modern medicine for a long time due to its high content of biologically active phenolics. The purpose of this work was to develop a method for their fractionation and identification, and to determine the most active antioxidant compounds in plant extract.</p> <p>Results</p> <p>An LC-MS method which enables fast qualitative and semiquantitative analysis was developed. The composition determined is in agreement with the previous results, where 6 flavonoids, 4 naphthodianthrones and 4 phloroglucinols have been identified. Significant antioxidant activity was determined for most of the fractions by DPPH assay (the lowest IC<sub>50 </sub>of 0.52 μg/ml), NO scavenging (6.11 μg/ml), superoxide scavenging (1.86 μg/ml), lipid peroxidation (0.0079 μg/ml) and FRAP (the highest reduction capacity of 104 mg Fe equivalents/g) assays.</p> <p>Conclusion</p> <p>LC-MS technique has been successfully applied for a quick separation and identification of the major components of <it>H. perforatum </it>fractions. Majority of the fractions analyzed have expressed a very high antioxidative activity when compared to synthetic antioxidants. The antioxidant activity could be attributed to flavonoids and phenolic acids, while phloroglucinols and naphthodianthrones showed no significant activity. It is demonstrated that it is possible to obtain, by fractionation, <it>H. perforatum </it>preparations with significantly increased phloroglucinols-to-naphthodianthrones ratio (up to 95:5).</p

    Development of fluorinated indanone-based derivatives for the imaging of monoamine oxidase B via positron emission tomography

    Get PDF
    Ziel/Aim The monoamine oxidase B (MAO B) isoenzyme is known to be involved in the oxidative deamination of biogenic amines. While the use of MAO B inhibitors is already well-established for the treatment of Parkinson’s disease, recent reports suggest its involvement in certain types of brain tumors.1 We herein aim at the synthesis and preclinical evaluation of fluorinated indanone-based derivatives targeting MAO B in the brain via positron emission tomography (PET). Methodik/Methods A small series of fluorinated indanone derivatives was obtained via the O-alkylation or esterification starting with the commercially available 6-hydroxy-2,3-dihydro-1H-inden-1-one in one or two steps. Binding affinities towards the human MAO isoenzymes were estimated in vitro by radioligand displacement. HL126 was selected for radiofluorination via its corresponding boronic acid pinacol ester. In vitro autoradiography of [18F]HL126 was performed in mice brain slices. In vivo evaluation of [18F]HL126 in CD-1 mice was carried out and metabolism studies were performed in plasma and brain samples via radio-HPLC. Ergebnisse/Results The fluorinated indanone derivatives were synthesized in yields ranging from 65-89 %. The fluorophenyl ether derivative, HL126, was further selected for radiofluorination based on its high binding affinity towards MAO B (Ki = 6.9 ± 5.3 nM). [18F]HL126 was obtained by an alcohol-enhanced copper-mediated approach via the corresponding boronic acid pinacol ester precursor with radiochemical yields of about 11 ± 3 %, high radiochemical purities (≥99 %) and molar activities in the range of 20 GBq/mmol. In vitro autoradiography showed a specific blockade with selective MAO-A/B inhibitors. PET/MRI analyses revealed that [18F]HL126 readily enters the brain. Some radiometabolites do cross the blood-brain barrier. Schlussfolgerungen/Conclusions Although metabolism studies with [18F] HL126 revealed the presence of radiometabolites in the brain, the high binding affinity towards MAO B and the pronounced selectivity in in vitro autoradiography studies encourage further derivatization of indanone-based scaffolds for targeting MAO B
    corecore