135 research outputs found

    NLRX1 inhibits the early stages of CNS inflammation and prevents the onset of spontaneous autoimmunity

    Get PDF
    Nucleotide-binding, leucine-rich repeat containing X1 (NLRX1) is a mitochondria-located innate immune sensor that inhibits major pro-inflammatory pathways such as type I interferon and nuclear factor-κB signaling. We generated a novel, spontaneous, and rapidly progressing mouse model of multiple sclerosis (MS) by crossing myelin-specific T-cell receptor (TCR) transgenic mice with Nlrx1−/− mice. About half of the resulting progeny developed spontaneous experimental autoimmune encephalomyelitis (spEAE), which was associated with severe demyelination and inflammation in the central nervous system (CNS). Using lymphocyte-deficient mice and a series of adoptive transfer experiments, we demonstrate that genetic susceptibility to EAE lies within the innate immune compartment. We show that NLRX1 inhibits the subclinical stages of microglial activation and prevents the generation of neurotoxic astrocytes that induce neuronal and oligodendrocyte death in vitro. Moreover, we discovered several mutations within NLRX1 that run in MS-affected families. In summary, our findings highlight the importance of NLRX1 in controlling the early stages of CNS inflammation and preventing the onset of spontaneous autoimmunity

    Inactivation of Effector Caspases through Nondegradative Polyubiquitylation

    Get PDF
    Ubiquitin-mediated inactivation of caspases has long been postulated to contribute to the regulation of apoptosis. However, detailed mechanisms and functional consequences of caspase ubiquitylation have not been demonstrated. Here we show that the Drosophila Inhibitor of Apoptosis 1, DIAP1, blocks effector caspases by targeting them for polyubiquitylation and nonproteasomal inactivation. We demonstrate that the conjugation of ubiquitin to drICE suppresses its catalytic potential in cleaving caspase substrates. Our data suggest that ubiquitin conjugation sterically interferes with substrate entry and reduces the caspase’s proteolytic velocity. Disruption of drICE ubiquitylation, either by mutation of DIAP1’s E3 activity or drICE’s ubiquitin-acceptor lysines, abrogates DIAP1’s ability to neutralize drICE and suppress apoptosis in vivo. We also show that DIAP1 rests in an “inactive” conformation that requires caspase-mediated cleavage to subsequently ubiquitylate caspases. Taken together, our findings demonstrate that effector caspases regulate their own inhibition through a negative feedback mechanism involving DIAP1 “activation” and nondegradative polyubiquitylation

    The Role of Endothelin-1 and Endothelin Receptor Antagonists in Inflammatory Response and Sepsis

    Get PDF

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link
    corecore