982 research outputs found
Possible use of self-calibration to reduce systematic uncertainties in determining distance-redshift relation via gravitational radiation from merging binaries
By observing mergers of compact objects, future gravity wave experiments
would measure the luminosity distance to a large number of sources to a high
precision but not their redshifts. Given the directional sensitivity of an
experiment, a fraction of such sources (gold plated -- GP) can be identified
optically as single objects in the direction of the source. We show that if an
approximate distance-redshift relation is known then it is possible to
statistically resolve those sources that have multiple galaxies in the beam. We
study the feasibility of using gold plated sources to iteratively resolve the
unresolved sources, obtain the self-calibrated best possible distance-redshift
relation and provide an analytical expression for the accuracy achievable. We
derive lower limit on the total number of sources that is needed to achieve
this accuracy through self-calibration. We show that this limit depends
exponentially on the beam width and give estimates for various experimental
parameters representative of future gravitational wave experiments DECIGO and
BBO.Comment: 6 pages, 2 figures, accepted for publication in PR
Cosmology with decaying tachyon matter
We investigate the case of a homogeneous tachyon field coupled to gravity in
a spatially flat Friedman-Robertson-Walker spacetime. Assuming the field
evolution to be exponentially decaying with time we solve the field equations
and show that, under certain conditions, the scale factor represents an
accelerating universe, following a phase of decelerated expansion. We make use
of a model of dark energy (with p=-\rho) and dark matter (p=0) where a single
scalar field (tachyon) governs the dynamics of both the dark components. We
show that this model fits the current supernova data as well as the canonical
\LambdaCDM model. We give the bounds on the parameters allowed by the current
data.Comment: 14 pages, 6 figures, v2, Discussions and references addede
Exploring the Expanding Universe and Dark Energy using the Statefinder Diagnostic
The coming few years are likely to witness a dramatic increase in high
quality Sn data as current surveys add more high redshift supernovae to their
inventory and as newer and deeper supernova experiments become operational.
Given the current variety in dark energy models and the expected improvement in
observational data, an accurate and versatile diagnostic of dark energy is the
need of the hour. This paper examines the Statefinder diagnostic in the light
of the proposed SNAP satellite which is expected to observe about 2000
supernovae per year. We show that the Statefinder is versatile enough to
differentiate between dark energy models as varied as the cosmological constant
on the one hand, and quintessence, the Chaplygin gas and braneworld models, on
the other. Using SNAP data, the Statefinder can distinguish a cosmological
constant () from quintessence models with and Chaplygin gas
models with at the level if the value of \om is
known exactly. The Statefinder gives reasonable results even when the value of
\om is known to only accuracy. In this case, marginalizing over
\om and assuming a fiducial LCDM model allows us to rule out quintessence
with and the Chaplygin gas with (both at
). These constraints can be made even tighter if we use the
Statefinders in conjunction with the deceleration parameter. The Statefinder is
very sensitive to the total pressure exerted by all forms of matter and
radiation in the universe. It can therefore differentiate between dark energy
models at moderately high redshifts of z \lleq 10.Comment: 21 pages, 17 figures. Minor typos corrected to agree with version
published in MNRAS. Results unchange
Growth of carbon nanotubes on quasicrystalline alloys
We report on the synthesis of carbon nanotubes on quasicrystalline alloys.
Aligned multiwalled carbon nanotubes (MWNTs) on the conducting faces of
decagonal quasicrystals were synthesized using floating catalyst chemical vapor
deposition. The alignment of the nanotubes was found perpendicular to the
decagonal faces of the quasicrystals. A comparison between the growth and tube
quality has also been made between tubes grown on various quasicrystalline and
SiO2 substrates. While a significant MWNT growth was observed on decagonal
quasicrystalline substrate, there was no significant growth observed on
icosahedral quasicrystalline substrate. Raman spectroscopy and high resolution
transmission electron microscopy (HRTEM) results show high crystalline nature
of the nanotubes. Presence of continuous iron filled core in the nanotubes
grown on these substrates was also observed, which is typically not seen in
MWNTs grown using similar process on silicon and/or silicon dioxide substrates.
The study has important implications for understanding the growth mechanism of
MWNTs on conducting substrates which have potential applications as heat sinks
Using Gravitational Lensing to study HI clouds at high redshift
We investigate the possibility of detecting HI emission from gravitationally
lensed HI clouds (akin to damped Lyman- clouds) at high redshift by
carrying out deep radio observations in the fields of known cluster lenses.
Such observations will be possible with present radio telescopes only if the
lens substantially magnifies the flux of the HI emission. While at present this
holds the only possibility of detecting the HI emission from such clouds, it
has the disadvantage of being restricted to clouds that lie very close to the
caustics of the lens. We find that observations at a detection threshold of 50
micro Jy at 320 MHz (possible with the GMRT) have a greater than 20%
probability of detecting an HI cloud in the field of a cluster, provided the
clouds have HI masses in the range 5 X 10^8 M_{\odot} < M_{HI} < 2.5 X 10^{10}
M_{\odot}. The probability of detecting a cloud increases if they have larger
HI masses, except in the cases where the number of HI clouds in the cluster
field becomes very small. The probability of a detection at 610 MHz and 233 MHz
is comparable to that at 320 MHz, though a definitive statement is difficult
owing to uncertainties in the HI content at the redshifts corresponding to
these frequencies. Observations at a detection threshold of 2 micro Jy
(possible in the future with the SKA) are expected to detect a few HI clouds in
the field of every cluster provided the clouds have HI masses in the range 2 X
10^7 M_{\odot} < M_{HI} < 10^9 M_{\odot}. Even if such observations do not
result in the detection of HI clouds, they will be able to put useful
constraints on the HI content of the clouds.Comment: 21 pages, 7 figures, minor changes in figures, accepted for
publication in Ap
Biological activity differences between TGF-β1 and TGF-β3 correlate with differences in the rigidity and arrangement of their component monomers
[Image: see text] TGF-β1, -β2, and -β3 are small, secreted signaling proteins. They share 71–80% sequence identity and signal through the same receptors, yet the isoform-specific null mice have distinctive phenotypes and are inviable. The replacement of the coding sequence of TGF-β1 with TGF-β3 and TGF-β3 with TGF-β1 led to only partial rescue of the mutant phenotypes, suggesting that intrinsic differences between them contribute to the requirement of each in vivo. Here, we investigated whether the previously reported differences in the flexibility of the interfacial helix and arrangement of monomers was responsible for the differences in activity by generating two chimeric proteins in which residues 54–75 in the homodimer interface were swapped. Structural analysis of these using NMR and functional analysis using a dermal fibroblast migration assay showed that swapping the interfacial region swapped both the conformational preferences and activity. Conformational and activity differences were also observed between TGF-β3 and a variant with four helix-stabilizing residues from TGF-β1, suggesting that the observed changes were due to increased helical stability and the altered conformation, as proposed. Surface plasmon resonance analysis showed that TGF-β1, TGF-β3, and variants bound the type II signaling receptor, TβRII, nearly identically, but had small differences in the dissociation rate constant for recruitment of the type I signaling receptor, TβRI. However, the latter did not correlate with conformational preference or activity. Hence, the difference in activity arises from differences in their conformations, not their manner of receptor binding, suggesting that a matrix protein that differentially binds them might determine their distinct activities
Accretion of Chaplygin gas upon black holes: Formation of faster outflowing winds
We study the accretion of modified Chaplygin gas upon different types of
black hole. Modified Chaplygin gas is one of the best candidates for a combined
model of dark matter and dark energy. In addition, from a field theoretical
point of view the modified Chaplygin gas model is equivalent to that of a
scalar field having a self-interacting potential. We formulate the equations
related to both spherical accretion and disc accretion, and respective winds.
The corresponding numerical solutions of the flow, particularly of velocity,
are presented and are analyzed. We show that the accretion-wind system of
modified Chaplygin gas dramatically alters the wind solutions, producing faster
winds, upon changes in physical parameters, while accretion solutions
qualitatively remain unaffected. This implies that modified Chaplygin gas is
more prone to produce outflow which is the natural consequence of the dark
energy into the system.Comment: 21 pages including 7 figures; published in Classical and Quantum
Gravit
Development of the edible blend films with good mechanical and barrier properties from pea starch and guar gum
The individual and interactive impacts of guar gum and glycerol on the pea starch-based edible film characteristics were examined using three factors with three level Box–Behnken response surface design. The results showed that density and elongation at break were only significantly (p < 0.05) affected by pea starch and guar gum in a positive linear fashion. The quadratic regression coefficient of pea starch showed a significant effect (p < 0.05) on thickness, density, puncture force, water vapour permeability, and tensile strength. While tensile strength and Young modulus affected by the quadratic regression coefficient of glycerol and guar gum, respectively. The results were analysed using Pareto analysis of variance (ANOVA) and the developed predictive equations for each response variable presented reliable and satisfactory fit with high coefficient of determination (R2) values (≥ 0.96). The optimized conditions with the goal of maximizing mechanical properties and minimizing water vapour permeability were 2.5 g pea starch, 0.3 g guar gum and 25 % (w/w) glycerol based on the dry film matter in 100 ml of distilled water. Generally, changes in the concentrations of pea starch, guar gum and glycerol resulted in changes in the functional properties of film
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
- …
