982 research outputs found

    Possible use of self-calibration to reduce systematic uncertainties in determining distance-redshift relation via gravitational radiation from merging binaries

    Full text link
    By observing mergers of compact objects, future gravity wave experiments would measure the luminosity distance to a large number of sources to a high precision but not their redshifts. Given the directional sensitivity of an experiment, a fraction of such sources (gold plated -- GP) can be identified optically as single objects in the direction of the source. We show that if an approximate distance-redshift relation is known then it is possible to statistically resolve those sources that have multiple galaxies in the beam. We study the feasibility of using gold plated sources to iteratively resolve the unresolved sources, obtain the self-calibrated best possible distance-redshift relation and provide an analytical expression for the accuracy achievable. We derive lower limit on the total number of sources that is needed to achieve this accuracy through self-calibration. We show that this limit depends exponentially on the beam width and give estimates for various experimental parameters representative of future gravitational wave experiments DECIGO and BBO.Comment: 6 pages, 2 figures, accepted for publication in PR

    Cosmology with decaying tachyon matter

    Full text link
    We investigate the case of a homogeneous tachyon field coupled to gravity in a spatially flat Friedman-Robertson-Walker spacetime. Assuming the field evolution to be exponentially decaying with time we solve the field equations and show that, under certain conditions, the scale factor represents an accelerating universe, following a phase of decelerated expansion. We make use of a model of dark energy (with p=-\rho) and dark matter (p=0) where a single scalar field (tachyon) governs the dynamics of both the dark components. We show that this model fits the current supernova data as well as the canonical \LambdaCDM model. We give the bounds on the parameters allowed by the current data.Comment: 14 pages, 6 figures, v2, Discussions and references addede

    Exploring the Expanding Universe and Dark Energy using the Statefinder Diagnostic

    Get PDF
    The coming few years are likely to witness a dramatic increase in high quality Sn data as current surveys add more high redshift supernovae to their inventory and as newer and deeper supernova experiments become operational. Given the current variety in dark energy models and the expected improvement in observational data, an accurate and versatile diagnostic of dark energy is the need of the hour. This paper examines the Statefinder diagnostic in the light of the proposed SNAP satellite which is expected to observe about 2000 supernovae per year. We show that the Statefinder is versatile enough to differentiate between dark energy models as varied as the cosmological constant on the one hand, and quintessence, the Chaplygin gas and braneworld models, on the other. Using SNAP data, the Statefinder can distinguish a cosmological constant (w=1w=-1) from quintessence models with w0.9w \geq -0.9 and Chaplygin gas models with κ15\kappa \leq 15 at the 3σ3\sigma level if the value of \om is known exactly. The Statefinder gives reasonable results even when the value of \om is known to only 20\sim 20% accuracy. In this case, marginalizing over \om and assuming a fiducial LCDM model allows us to rule out quintessence with w0.85w \geq -0.85 and the Chaplygin gas with κ7\kappa \leq 7 (both at 3σ3\sigma). These constraints can be made even tighter if we use the Statefinders in conjunction with the deceleration parameter. The Statefinder is very sensitive to the total pressure exerted by all forms of matter and radiation in the universe. It can therefore differentiate between dark energy models at moderately high redshifts of z \lleq 10.Comment: 21 pages, 17 figures. Minor typos corrected to agree with version published in MNRAS. Results unchange

    Growth of carbon nanotubes on quasicrystalline alloys

    Full text link
    We report on the synthesis of carbon nanotubes on quasicrystalline alloys. Aligned multiwalled carbon nanotubes (MWNTs) on the conducting faces of decagonal quasicrystals were synthesized using floating catalyst chemical vapor deposition. The alignment of the nanotubes was found perpendicular to the decagonal faces of the quasicrystals. A comparison between the growth and tube quality has also been made between tubes grown on various quasicrystalline and SiO2 substrates. While a significant MWNT growth was observed on decagonal quasicrystalline substrate, there was no significant growth observed on icosahedral quasicrystalline substrate. Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) results show high crystalline nature of the nanotubes. Presence of continuous iron filled core in the nanotubes grown on these substrates was also observed, which is typically not seen in MWNTs grown using similar process on silicon and/or silicon dioxide substrates. The study has important implications for understanding the growth mechanism of MWNTs on conducting substrates which have potential applications as heat sinks

    Using Gravitational Lensing to study HI clouds at high redshift

    Full text link
    We investigate the possibility of detecting HI emission from gravitationally lensed HI clouds (akin to damped Lyman-α\alpha clouds) at high redshift by carrying out deep radio observations in the fields of known cluster lenses. Such observations will be possible with present radio telescopes only if the lens substantially magnifies the flux of the HI emission. While at present this holds the only possibility of detecting the HI emission from such clouds, it has the disadvantage of being restricted to clouds that lie very close to the caustics of the lens. We find that observations at a detection threshold of 50 micro Jy at 320 MHz (possible with the GMRT) have a greater than 20% probability of detecting an HI cloud in the field of a cluster, provided the clouds have HI masses in the range 5 X 10^8 M_{\odot} < M_{HI} < 2.5 X 10^{10} M_{\odot}. The probability of detecting a cloud increases if they have larger HI masses, except in the cases where the number of HI clouds in the cluster field becomes very small. The probability of a detection at 610 MHz and 233 MHz is comparable to that at 320 MHz, though a definitive statement is difficult owing to uncertainties in the HI content at the redshifts corresponding to these frequencies. Observations at a detection threshold of 2 micro Jy (possible in the future with the SKA) are expected to detect a few HI clouds in the field of every cluster provided the clouds have HI masses in the range 2 X 10^7 M_{\odot} < M_{HI} < 10^9 M_{\odot}. Even if such observations do not result in the detection of HI clouds, they will be able to put useful constraints on the HI content of the clouds.Comment: 21 pages, 7 figures, minor changes in figures, accepted for publication in Ap

    Biological activity differences between TGF-β1 and TGF-β3 correlate with differences in the rigidity and arrangement of their component monomers

    Get PDF
    [Image: see text] TGF-β1, -β2, and -β3 are small, secreted signaling proteins. They share 71–80% sequence identity and signal through the same receptors, yet the isoform-specific null mice have distinctive phenotypes and are inviable. The replacement of the coding sequence of TGF-β1 with TGF-β3 and TGF-β3 with TGF-β1 led to only partial rescue of the mutant phenotypes, suggesting that intrinsic differences between them contribute to the requirement of each in vivo. Here, we investigated whether the previously reported differences in the flexibility of the interfacial helix and arrangement of monomers was responsible for the differences in activity by generating two chimeric proteins in which residues 54–75 in the homodimer interface were swapped. Structural analysis of these using NMR and functional analysis using a dermal fibroblast migration assay showed that swapping the interfacial region swapped both the conformational preferences and activity. Conformational and activity differences were also observed between TGF-β3 and a variant with four helix-stabilizing residues from TGF-β1, suggesting that the observed changes were due to increased helical stability and the altered conformation, as proposed. Surface plasmon resonance analysis showed that TGF-β1, TGF-β3, and variants bound the type II signaling receptor, TβRII, nearly identically, but had small differences in the dissociation rate constant for recruitment of the type I signaling receptor, TβRI. However, the latter did not correlate with conformational preference or activity. Hence, the difference in activity arises from differences in their conformations, not their manner of receptor binding, suggesting that a matrix protein that differentially binds them might determine their distinct activities

    Accretion of Chaplygin gas upon black holes: Formation of faster outflowing winds

    Full text link
    We study the accretion of modified Chaplygin gas upon different types of black hole. Modified Chaplygin gas is one of the best candidates for a combined model of dark matter and dark energy. In addition, from a field theoretical point of view the modified Chaplygin gas model is equivalent to that of a scalar field having a self-interacting potential. We formulate the equations related to both spherical accretion and disc accretion, and respective winds. The corresponding numerical solutions of the flow, particularly of velocity, are presented and are analyzed. We show that the accretion-wind system of modified Chaplygin gas dramatically alters the wind solutions, producing faster winds, upon changes in physical parameters, while accretion solutions qualitatively remain unaffected. This implies that modified Chaplygin gas is more prone to produce outflow which is the natural consequence of the dark energy into the system.Comment: 21 pages including 7 figures; published in Classical and Quantum Gravit

    Development of the edible blend films with good mechanical and barrier properties from pea starch and guar gum

    Get PDF
    The individual and interactive impacts of guar gum and glycerol on the pea starch-based edible film characteristics were examined using three factors with three level Box–Behnken response surface design. The results showed that density and elongation at break were only significantly (p &lt; 0.05) affected by pea starch and guar gum in a positive linear fashion. The quadratic regression coefficient of pea starch showed a significant effect (p &lt; 0.05) on thickness, density, puncture force, water vapour permeability, and tensile strength. While tensile strength and Young modulus affected by the quadratic regression coefficient of glycerol and guar gum, respectively. The results were analysed using Pareto analysis of variance (ANOVA) and the developed predictive equations for each response variable presented reliable and satisfactory fit with high coefficient of determination (R2) values (≥ 0.96). The optimized conditions with the goal of maximizing mechanical properties and minimizing water vapour permeability were 2.5 g pea starch, 0.3 g guar gum and 25 % (w/w) glycerol based on the dry film matter in 100 ml of distilled water. Generally, changes in the concentrations of pea starch, guar gum and glycerol resulted in changes in the functional properties of film

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit
    corecore