1,194 research outputs found

    Gate Capacitance Coupling of Singled-walled Carbon Nanotube Thin-film Transistors

    Full text link
    The electrostatic coupling between singled-walled carbon nanotube (SWNT) networks/arrays and planar gate electrodes in thin-film transistors (TFTs) is analyzed both in the quantum limit with an analytical model and in the classical limit with finite-element modeling. The computed capacitance depends on both the thickness of the gate dielectric and the average spacing between the tubes, with some dependence on the distribution of these spacings. Experiments on transistors that use sub-monolayer, random networks of SWNTs verify certain aspects of these calculations. The results are important for the development of networks or arrays of nanotubes as active layers in TFTs and other electronic devices.Comment: accepted to APL ver 2: ps figures replaced with new eps figure

    Statistical Theory for Incoherent Light Propagation in Nonlinear Media

    Full text link
    A novel statistical approach based on the Wigner transform is proposed for the description of partially incoherent optical wave dynamics in nonlinear media. An evolution equation for the Wigner transform is derived from a nonlinear Schrodinger equation with arbitrary nonlinearity. It is shown that random phase fluctuations of an incoherent plane wave lead to a Landau-like damping effect, which can stabilize the modulational instability. In the limit of the geometrical optics approximation, incoherent, localized, and stationary wave-fields are shown to exist for a wide class of nonlinear media.Comment: 4 pages, REVTeX4. Submitted to Physical Review E. Revised manuscrip

    Impurity-assisted tunneling in graphene

    Full text link
    The electric conductance of a strip of undoped graphene increases in the presence of a disorder potential, which is smooth on atomic scales. The phenomenon is attributed to impurity-assisted resonant tunneling of massless Dirac fermions. Employing the transfer matrix approach we demonstrate the resonant character of the conductivity enhancement in the presence of a single impurity. We also calculate the two-terminal conductivity for the model with one-dimensional fluctuations of disorder potential by a mapping onto a problem of Anderson localization.Comment: 6 pages, 3 figures, final version, typos corrected, references adde

    Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots

    Get PDF
    Cataloged from PDF version of article.We propose and demonstrate the fabrication of flexible, freestanding films of InP/ZnS quantum dots (QDs) using fatty acid ligands across very large areas (greater than 50 cm x 50 cm), which have been developed for remote phosphor applications in solid-state lighting. Embedded in a poly(methyl methacrylate) matrix, although the formation of stand alone films using other QDs commonly capped with trioctylphosphine oxide (TOPO) and oleic acid is not efficient, employing myristic acid as ligand in the synthesis of these QDs, which imparts a strongly hydrophobic character to the thin film, enables film formation and ease of removal even on surprisingly large areas, thereby avoiding the need for ligand exchange. When pumped by a blue LED, these Cd-free QD films allow for high color rendering, warm white light generation with a color rendering index of 89.30 and a correlated color temperature of 2298 K. In the composite film, the temperature-dependent emission kinetics and energy transfer dynamics among different-sized InP/ZnS QDs are investigated and a model is proposed. High levels of energy transfer efficiency (up to 80%) and strong donor lifetime modification (from 18 to 4 ns) are achieved. The suppression of the nonradiative channels is observed when the hybrid film is cooled to cryogenic temperatures. The lifetime changes of the donor and acceptor InP/ZnS QDs in the film as a result of the energy transfer are explained well by our theoretical model based on the exciton-exciton interactions among the dots and are in excellent agreement with the experimental results. The understanding of these excitonic interactions is essential to facilitate improvements in the fabrication of photometrically high quality nanophosphors. The ability to make such large-area, flexible, freestanding Cd-free QD films pave the way for environmentally friendly phosphor applications including flexible, surface-emitting light engines

    Prediction of Ideas Number During a Brainstorming Session

    Get PDF
    International audienceIn this paper, we present an approach allowing the prediction of ideas number during a brainstorming session. This prediction is based on two dynamic models of brainstorming, the non-cognitive and the cognitive models proposed by Brown and Paulus (Small Group Res 27(1):91–114, 1996). These models describe for each participant, the evolution of ideas number over time, and are formalized by differential equations. Through solution functions of these models, we propose to calculate the number of ideas of each participant on any time intervals and thus in the future (called prediction). To be able to compute solution functions, it is necessary to determine the parameters of these models. In our approach, we use optimization model for model parameters calculation in which solution functions are approximated by numerical methods. We developed two generic optimization models, one based on Euler’s and the other on the fourth order Runge–Kutta’s numerical methods for the solving of differential equations, and we apply them to the non-cognitive and respectively to the cognitive models. Through some feasibility tests, we show the adequacy of the proposed approach to our prediction context

    Ballistic Josephson junctions in edge-contacted graphene

    Full text link
    Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest quality graphene-superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here we report graphene based Josephson junctions with one-dimensional edge contacts of Molybdenum Rhenium. The contacts exhibit a well defined, transparent interface to the graphene, have a critical magnetic field of 8 Tesla at 4 Kelvin and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-P\'{e}rot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 μ\mum. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state.Comment: Updated version after peer review. Includes supplementary material and ancillary file with source code for tight binding simulation

    Modulational instability in periodic quadratic nonlinear materials

    Get PDF
    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.Comment: 4 pages, 7 figures corrected minor misprint

    Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine

    Get PDF
    Objective Enzymatic degradation of the extracellular matrix is known to be powerful regulator of atherosclerosis. However, little is known about the enzymatic regulation of heparan sulfate proteoglycans (HSPGs) during the formation and progression of atherosclerotic plaques. Methods and results Swine were rendered diabetic through streptozotocin injection and hyperlipidemic through a high fat diet. Arterial remodeling and local endothelial shear stress (ESS) were assessed using intravascular ultrasound, coronary angiography and computational fluid dynamics at weeks 23 and 30. Coronary arteries were harvested and 142 arterial subsegments were analyzed using histomorphologic staining, immunostaining and real time PCR. Heparanase staining and activity was increased in arterial segments with low ESS, in lesions with thin cap fibroatheroma (TCFA) morphology and in lesions with severely degraded internal elastic laminae. In addition, heparanase staining co-localized with staining for CD45 and MMP-2 within atherosclerotic plaques. Dual staining with gelatinase zymography and heparanase immunohistochemical staining demonstrated co-localization of matrix metalloprotease activity with heparanase staining. A heparanase enzymatic activity assay demonstrated increased activity in TCFA lesions, subsegments with low ESS and in macrophages treated with oxidized LDL or angiotensin II. Conclusions Taken together, our results support a critical role for heparanase in the development of vulnerable plaques and suggest a novel therapeutic target for the treatment of atherosclerosis.Novartis (Firm)Boston Scientific CorporationNational Institutes of Health (U.S.) (Grant R01 GM49039
    corecore