7,137 research outputs found

    Combinatorics and formal geometry of the master equation

    Get PDF
    We give a general treatment of the master equation in homotopy algebras and describe the operads and formal differential geometric objects governing the corresponding algebraic structures. We show that the notion of Maurer-Cartan twisting is encoded in certain automorphisms of these universal objects

    Model reconstructions for the Si(337) orientation

    Full text link
    Although unstable, the Si(337) orientation has been known to appear in diverse experimental situations such as the nanoscale faceting of Si(112), or in the case of miscutting a Si(113) surface. Various models for Si(337) have been proposed over time, which motivates a comprehensive study of the structure of this orientation. Such a study is undertaken in this article, where we report the results of a genetic algorithm optimization of the Si(337)-(2Ă—1)(2\times 1) surface. The algorithm is coupled with a highly optimized empirical potential for silicon, which is used as an efficient way to build a set of possible Si(337) models; these structures are subsequently relaxed at the level of ab initio density functional methods. Using this procedure, we retrieve most of the (337) reconstructions proposed in previous works, as well as a number of novel ones.Comment: 5 figures (low res.); to appear in J. Appl. Phy

    Limits to clock synchronization induced by completely dephasing communication channels

    Full text link
    Clock synchronization procedures are analyzed in the presence of imperfect communications. In this context we show that there are physical limitations which prevent one from synchronizing distant clocks when the intervening medium is completely dephasing, as in the case of a rapidly varying dispersive medium.Comment: 6 Pages. Revised version as published in PR

    Inspiration from Intersecting D-branes: General Supersymmetry Breaking Soft Terms in No-Scale F{\cal F}-SU(5)SU(5)

    Full text link
    Motivated by D-brane model building, we evaluate the F\cal{F}-SU(5)SU(5) model with additional vector-like particle multiplets, referred to as flippons, within the framework of No-Scale Supergravity with non-vanishing general supersymmetry breaking soft terms at the string scale. The viable phenomenology is uncovered by applying all current experimental constraints, including but not limited to the correct light Higgs boson mass, WMAP and Planck relic density measurements, and several LHC constraints on supersymmetric particle spectra. Four interesting regions of the parameter space arise, as well as mixed scenarios, given by: (i) light stop coannihilation; (ii) pure Higgsino dark matter; (iii) Higgs funnel; and (iv) light stau coannihilation. All regions can generate the observed value of the relic density commensurate with a 125 GeV light Higgs boson mass, with the exception of the relatively small relic density value for the pure Higgsino lightest supersymmetric particle (LSP). This work is concluded by gauging the model against present LHC search constraints and derivation of the final states observable at the LHC for each of these scenarios.Comment: 13 pages, 4 Figures, 4 Table

    The Response of a Hot-Wire Anemometer to a Bubble of Air in Water

    Get PDF
    The sensitivity of peak voltage drop and duration of the change In sensor voltages due to the impaction of different size bubbles are confuted and measured. Excellent agreement between these is found for bubbles somewhat larger than the sensor diameter and smaller than Its effective length in water streams in a range of 1.5 to 9 feet per second. The method suggests a reliable method for sizing bubbles in a water stream. The effects due to nondirect hits are not treated

    Process reconstruction from incomplete and/or inconsistent data

    Full text link
    We analyze how an action of a qubit channel (map) can be estimated from the measured data that are incomplete or even inconsistent. That is, we consider situations when measurement statistics is insufficient to determine consistent probability distributions. As a consequence either the estimation (reconstruction) of the channel completely fails or it results in an unphysical channel (i.e., the corresponding map is not completely positive). We present a regularization procedure that allows us to derive physically reasonable estimates (approximations) of quantum channels. We illustrate our procedure on specific examples and we show that the procedure can be also used for a derivation of optimal approximations of operations that are forbidden by the laws of quantum mechanics (e.g., the universal NOT gate).Comment: 9pages, 5 figure
    • …
    corecore