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THE RESPONSE OP A HOT-W IRE ANEMOMETER TO

A BUBBLE OP AIR IN WATER*

S. C. Chuang** and V. W. Goldschm idt*** 
Purdue U n iv ers ity  
L a fa y e tte , Indiana

ABJ ^ ACT

The s e n s i t iv i t y  o f  peak v o lta g e  drop  and du ration  o f  tha change In sensor 

v o lta g e s  due to  the Im paction o f  d i f f e r e n t  s ize  bubbles a re  con fu ted  and Mea­

sured. E x ce llen t  agreement between these Is  found fo r  bubbles somewhat 

la rger  than the sensor diam eter and sm aller than I t s  e f f e c t i v e  length  in  

water strea a s  In a range o f  l .S  to  9 f e e t  per second. The method suggests e 

r e l i a b l e  nethod f o r  s iz in g  bubbles In a water s tre a a . The e f f e c t s  due to  

n o n d lrect  h its  are not trea ted .

INTRODUCTION

U ndoubtedly, the most common v i l l a i n  to  research ers a t t e s t i n g  to 

sessu re  turbulence In water has been the presence o f  a ir  bu b bles. Akin to  

dust in  a i r ,  they many times become the scapegoat f o r  poor c a l ib r a t io n  cu rv es , 

and h en ce , u n re lia b le  amasuresmnts.

In  the work reported  h ere in  bubbles were purposely  Introduced In a water 

j e t .  Their d is p e rs io n  was o f  i n t e r e s t ;  hence, a means o f  d e ten s in in g  th e ir  

co n ce n tra tio n  and s ize  d is t r ib u t io n  was necessary . E a rlie r  work had a lready 

extended the use o f  the h o t-w ire  anemometer as an aeroso l sam pler; now the 

purpose was to  employ i t  as a bubble saaq>ler, both In s iz e  and con cen tra tion .

The work presented h ere in  tr e a ts  the fon eer and in  p a r t icu la r , the nature o f  

the s ig n a l due to  the traverse  o f  a bubble past the sen sor.

The bubbles may be c la s s i f i e d  In to  thrae groups o f  s iz e s  accord in g  to  

th a lr  behavior when approaching the w ire . In the f i r s t  group are those 

which are o f  a diam eter in  the order o f  A times the s e n s o r 's  diam eter or sm aller. 

These w i l l  tend to  avoid Im paction w ith  the sen sor, or to  r o l l  o f f  w ithout 

break in g  when Im pacting. This Is  due to  the pressure f i e l d  caused by the 

cu rv in g  stream lin es. The second group Is  that o f  bubbles whose diam eter Is  

In the order o f  magnitude o f  the s e n s o r 's  length o r  la rg e r . These w il l  In 

gen era l tend to  change shape and d is t o r t  in to  an u n p red ictab le  geoamtry whan 

h i t t in g  the sen sor . I t  Is the group o f  bubbles whose s i z e  Is  somewhat la rg e r  

than the wire diam eter and ssm lle r  than i t s  length  to which our a tte n t io n  Is 

l im ite d . I t  has been found that bubbles ranging from about 4 tim es to  a t  lea st 

20 tim es the s e n s o r 's  d iam eter, behave In an o rd e r ly  and p re d ic ta b le  manner 

when 1 exacting d i r e c t ly  on the con v en tion a l c y l in d r ic a l  sen sor.

In the reported  work the e f f e c t  o f  p a r t ia l  h it s  or bubbles h it t in g  a t  

a g la n ce  Is not trea ted . In e sseoce  th is  means that the sample curves o f

•P artly  supported by the Department o f  I n te r io r ,  Pederal Water P o llu t io n  
C ontrol A d m in istra tion , by tha N ational S cience Foundation, and by Purdue 
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Figure 1 ere assumed to  be recta n gu lar In shape. This i s  a strong l im ita t io n  

to  the aampler. To n e c e s s a r ily  iaprove from th is  assum ption, the a ctu a l path- 

l in e  geoamtry has to  be determ ined. The assumption is  tantamount to  c o n s id e r ­

ing o n ly  bubbles d i r e c t ly  aimed towards the sen sor.

A bubble when h i t t in g  the w ire w i l l  change the heat tra n s fe r  c h a r a c te r is ­

t i c  and hence cause a change In the w ire v o lta g e 3 . The w ire v o lta g e  drop 

w i l l  change as shown In  Figure 2. The v o lta g e  drop corresponds to  a decrease 

In c o o l in g  f o r  a con stan t temperature anemometer. The time o f  tra v e rse , t ,  

and peak v o lta g e  drop o f  the s ig n a l,  Ep , are re la te d  to  the bubble s iz e ,  d b , 

and the stream v e lo c i t y ,  V. In  the above, Ep Is  defin ed  as the d i f f e r e n c e  o f 

the maximum and minimise values o f  the v o lta g e  a cross  the w ire during  the bubble 

ls p a c t lo n .  The re la t io n s h ip  among db , Ep , tb , and V ( i f  d e fin ed ) would then 

perm it measurement o f  the bubble s ize  as w e ll as bubble con cen tra tion  in  the 

bubble-w ater two-phase flow  from a sim ple a n a ly s is  o f  the c o o lin g  s ig n a l.

THEORETICAL RESPONSE

TWo d i f f e r e n t  c r i t e r i a ,  as suggested in  Figure 2, may be used fo r  mea­

su rin g  bubble s iz e .  One is  the time o f  traverse  and the other the peak 

v o lta g e  drop. C orrespond ingly  two c o e f f i c ie n t s  o f  s e n s i t iv i t y  can  be d e fin e d .

t

wire
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Consider the f i r s t ,  i . e . ,  d ( t b) /d ( d b) • S( . Assume that the bubble 

moves with the same v e lo c i t y  as the c a r r ie r  stream , and remains in  a sp h eri­

c a l  shape even w hile  en g u lfin g  and passing the w ire . The r e la t io n s h ip  o f  

t^ , d^, dw and Vb w i l l  sim ply be

l b + aW
Vb

( 1)

where is  the c y l in d r ic a l  sensor diam eter. The s e n s i t iv i t y  becomes 

simply

S -  1/V. (2)t b

Consider the second, i . e . ,  d (E p )/d (d ^ ) -  Sg. The instaneous v o lta g e  

across  the w ire is  a fu n ction  o f  time

FIG. 3 -a

heat conducted 

away due to  

forced convection

ASSUM ED GEOMETRY OF IM  FACTION 

heat flow out due to
axial conduction

heat flow- in due to 
axial conduction

FIG. 3 -b  ENERG Y BALANCE OF A FIN ITE W IRE ELEMENT

E (t )  -  I ( t )  R (3)

where E ( t ) ,  l ( t )  and R are v o lta g e , cu rren t and re s is ta n ce  a t  tim e, t .

Note that s in ce  a con stan t temperature anemometer is  used then R, f o r  a fixed  

overheat r a t io ,  has a constant value.

2The t o t a l  Joulean heat o f  the w ire , I ( t )R ,  is  equal to  the heat per 

u n it time tra n s fe rred  to the a ir  bubble and to  the w ater from the sen sor .

Once the heat tra n s fe r  c h a r a c te r is t ic  o f  the w ire is  know), I ( t )  can be obta in ed , 

and E (t) can be ca lcu la te d  from equation  ( 3 ) .

The assumed geometry, a t a time t ,  when the bubble d i r e c t l y  en g u lfs  the 

m iddle o f  the wire is  shown In Figure 3. J t  is  the e f f e c t i v e  length o f  the 

w ire , rb is  the bubble radius and f ( t )  Is the h a lf length o f  the w ire exposed 

to  a ir  phase. Hie la t te r  i s  a fu n ction  o f  t and bubble v e lo c it y  V,

f ( t )  -  [r*  - ( r b - V t ) V /2  (4)

The energy con serva tion  equation  n e g le c t in g  fre e  con v ection  e f f e c t s  reeds

dy2
I 2 ( . )  r ( y , t )  -  C» -  l  i>2l’g ; t )

+ » l [Tw( y , 0  - Tb ( t ) J

fo r  the part o f  the wire exposed to  the a i r  phase and

(5a )

I - 't t )  r ( y , t )
3t

d ^ w O r.O
K — Z2--------

+ a2 [Tw( y . t )  - Te ] (5b )

f o r  the part o f  the wire exposed t o  the w ater phase. The l e f t  hand s id e  o f  

equations (5a ) and (5b) is  the rate o f  the thermal energy produ ction  per unit 

length  o f  the wire at p o s it io n  y (measured e x la l ly  s lan g  the w ire ) end at 

tim e t .  r ( y , t )  i s  the e l e c t r i c  r e s is ta n ce  par u n it length  a t p o s it io n  y

and at tim e t .  I t  i s  l in e a r ly  re la te d  to  the w ire  tem perature, Tw( y , t ) ,  

r ( y , t )  = r 0 [ l  +  b(Tw( y , t )  -  T ^ ]  (6 )

where Tw( y , t )  i s  the w ire tem perature at p o s it io n  y and at tim e t ,  r c  is  

the r e s i s t i v i t y  per u n it len gth  o f  the w ire  at tem perature TQ and b i s  the 

tem perature c o e f f i c ie n t  o f  the e l e c t r i c a l  r e s i s t i v i t y .

The f i r s t  term in  the r ig h t  hand s id e  o f  equ a tion s (5a) and (5b) i s  

th e  unsteady term, where Cy i s  the w ire s p e c i f i c  h eat.

The second te rn  l o  the r ig h t  hand s id e  o f  aqu ations (5a ) and (Sb) i s  

th e  ra te  o f  heat con du ction  in  the a x ia l d ir e c t io n ;  here K i s  the corresp on d in g  

thermal c o n d u c t iv ity .

The th ird  term in  the r ig h t  hand s id e  o f  equations (5a) and (5b) c o r re ­

sponds t o  the fo rce d  co n v e ctio n . Tb ( t )  i s  the taa^erature w ith in  the bubble,

Ta i s  the surrounding w ater tem perature, and S| and ar* the hast t ra n s fe r  

c o e f f i c i e n t s  per un it length  o f  the w ire exposed to  the s i r  and to the 

w ater p h a se s ,r e s p e c t iv e ly . A l l  o f  the above c o e f f i c i e n t s  can  be e a s i ly

d e fin ed  ex cep t  f o r  a , a .  and T. ( t ) .  The bubble tam perature is  assumed1 2  b

homogeneous and hence dependant on time on ly .

For the ca se  where the w ire  element i s  exposed to  the a i r  phase, a j 

nay be expressed  as

a t -  - A  - i  «d* -  xNu| k t (7 )
**w

where k^ is  the heat con d u ction  c o e f f i c i e n t  o f  tha a i r  at the film  tem perature 

and Muj i s  the N usselt number. The Nuaselt number i s  a fu n ction  o f  the F ran dtl 

and R eynolds m ediate. I t  i s  ca lcu la te d  a t  tha f i lm  tamperature,

Tf| * * I V **0 * V*n <*>
99



9 0

For a ir  flow  over the w ire , the M usselt number may be expreseed as* 

r  T017
Nu -  C + D Re" I f  1 1 (9)

l r b ( t )  J

The c o e f f i c i e n t s  C and D and the exponent n are dependent on the Reynolds 

number. For Reynolds numbers between 2 and 20, they become C • 0 .2 4 , D * 0 .5 6  

and n • 0 .4 5 .

For the case  where the w ire eleawnt Is exposed to  the water phase, 

is  expressed as

^u2 k2
a2 ’  - j - 2  *dw '  * " u2 k2 <10>

w

where k^ is  heat con d u ction  c o e f f i c i e n t  o f  the water at the f ilm  temperature 

and Nu  ̂ is  N usselt number ca lcu la te d  at the f i lm  tem perature,

Tf 2 * M tw( y .O  +  t j . U D

E ckert and Drake^ suggest that

0 .31  0 .5Nu2 = 0 .4 3  + 0.534 Pr2 Re2
(12)

fo r  1 < Re  ̂ < 4 ,000

Equations (7 ) through (12) g iv e  then v a lid  e i ^ i r i c a l  values f o r  the 

c o e f f i c i e n t s  and a? o f  equ a tion s (5a) and (5 b ) .  One o th er  term deserv in g  

fu r th e r  co n s id e ra t io n  is  T ^ (t ) .  I t  appears in  the la s t  term o f  equation  

(5 a ) ,  making equ ation  (5a) much more com plicated than (5b) due to the addi­

t io n a l time dependence. In order to  account fo r  t h i s ,  a q u a si-stea d y  case 

i s  assumed where the temperature d is t r ib u t io n  in s id e  the a i r  bubble i s  con s id ­

ered  uniform  at a c e r ta in  in sta n t during the heating p rocess . Equating the 

time rate  o f  change o f  heat in s id e  the bubble with that tran sferred  per unit 

time from the w ire segment in  co n ta ct  with the bubble i t s e l f  then 

4 r 3 £ ( °
1 _  ^ ( t ) ]  -  ^  W y . t )  -  Tb ( t ) ] d y  (13)

- f ( t )

In  the above is  the d e n s ity , is  the s p e c i f i c  heat o f  the a i r ,  and f ( t )  

i s  as d e fin ed  in equation (4 ) .

Equations (5a) and (5b ) togeth er with (6 )  through (13) 

com prise now a com plete system o f  lin ea r p a r t ia l  d i f f e r e n t i a l  equations.

Together w ith the constant temperature op era tion  requlream nt that
^/2

j  r ( y . t )  dy -  R (14)

-J/2

a num erical s o lu d o n  and e v a lu a tio n  o f  the s e n s i t i v i t y ,  Sg can be m d e . D e ta ils  

o f  the computer so lu t io n  are  not g iven  in  th is  p a p er; however, they w il l  be 

p art o f  the f i r s t  a u th or 's  Ph.D. th e s is .

Figure 4 is  a ty p ica l  v o lta g e  versus time cu rv e ; and, i t  is  f o r  a 400 

m icron bubble in  a 4 fps stream. The a b sc is sa  is  p lo tte d  as a dim ension less 

tim e. Vt/V . S im ila r ity  w ith the o s c il lo g r a p h  o f  F igure 2 i s  not seen in 

the somewhat skewed ca lcu la te d  s ig n a l o f F igure 4 .

Figure 5 shows the computed s e n s i t iv i t y  S^, r e la t in g  the v o lta g e  to 

the bubble s iz e .  The peak v o lta g e  in crea ses  with bubble s iz e  and decreases 

w ith v e lo c i t y .  A stap le  fu n ct io n a l r e la tio n s h ip  f o r  Sp, as that f o r  S£ 

(eq u a tion  ( 2 ) ) ,  is  not p o s s ib le  although i t s  value mey be obtained from a 

fa m ily  o f  curves such as those in  Figure 5

MEASURED response

Experim ental Setup

A Thermosystem (Model 1217-20) hot f i lm  probe was used. The w ire  diam eter, 

d . and e f f e c t i v e  l e n g t h , w e r e  measured as 59 and 1324 m ic r o n s ,r e s p e c t iv e ly .w

The c r o s s - s e c t io n  o f  the w ire , a ccord in g to  the m anufacturers i s  adequately  

d escr ib ed  by F igure 6b. The flow  f ie ld  c o n s is te d  o f  a submerged c ir c u la r  

J e t .  The d la s m te ro f the j e t  o r i f i c e  was 1 /2  inch . The e x i t  v e lo c i t y  o f  the 

c a r r ie r  stream ranged from 1 .5  fps to  12 f p s .  A l l  measurements were taken in 

the p o te n t ia l  c o r e .  The schem atic diagram o f  the flow  f i e l d  i s  shown in 

F igure 6a and 6 c . Bubbles o f  three d i f f e r e n t  s ize s  were generated by applying 

a fixed  a i r  p ressu re  through a small syrin ge  tube placed  ju s t  upstream o f  

the je t  o r i f i c e .  The in n er diam eter o f  the syringe tube n ozz le  was o f  28 

m icrons. The bubbles generated were measured in  the moving stream photo­

g ra p h ica lly  as 400^, 950^ and 1300p. These s ize s  were a ls o  checked by 

measuring the r i s e  time o f  the bubbles in  a qu iescent stream . The h ot-w ire  

sensor was c a r e fu l ly  p laced  in  the p o te n t ia l  core o f  the j e t  in  such a 

manner that the bubbles h i t  d i r e c t ly  upon i t .  D irect  h i t t in g  was a scerta in ed  

by m onitoring the output s ig n a l on the o s c i l l o s c o p e  w hile a d ju stin g  the 

lo ca t io n  o f  the sensor.

T est and R esu lts

The time o f  bubble tra v erse , t ,  and the peak vo lta ge  drop E^, were 

measured from o s c i l l o s c o p e  p ic tu re s  as that shown in  Figure 2. As a 

fu rth er  example the corresponding s ign a ls  f o r  a 400 micron bubble h it t in g  

the w ire a t d i f f e r e n t  v e l o c i t i e s  are shown in  Figures 7a through 7 f .  The 

changes in  the shape o f  the s ig n a l with an increase  o f  bubble v e lo c i t y  bring 

about soeie u n certa in ty  when measuring the traverse  time fo r  bubble v e l o c i t i e s  

g reater  than 9 fp s .

The corresp on d in g  measured r e la tio n s h ip  between t and dfe is  shown in

Figure 8 . The re s u lts  are  v a lid  only fo r  v e lo c it i e s  ranging from 1.5 fps

to  9 fp s . The th e o r e t ic a l  re la tio n sh ip  between t and d was given by equationb

( 1 ) .  I t  is  p lo t te d  on Figure 8 as a dashed lin e  showing e x c e l le n t  agreement.

The corresp onding  r e la tio n s h ip  between E and d , as measured from the
p b

o s c i l lo s c o p e  p ic tu re s  are shown surperposed on the th e o r e t ic a l  p lo t s  o f  F igure 5



rb

FIG. 4  T Y P ICA L VOLTAGE V S. T IM E  (CALCULATED)
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.5 voH/div.

I volt/div.

2 ms/ttiv.

FIG. 7 -a  db = 4 0 0 u , vb = 1.5 fps

0.2 ms/div.

FIG. 7 -b  db * 4 0 0 'U, vb * 3.07 fp s

0.3 vo*t/dlv.

0.05 ms/div.

FIG. 7-e db = 4 0 0 'u , vb = 14 fps

FIG. 7  SIGNALS OF VARIOUS VOLTAGE OUTPUTS

2 ms/div.

FIG 7 -c  db * 4 0 0  u , Vh -5  5 fps

0 3 vort/dlv.

006 ms/div.

FIG. 7 - d db - 4 0 0 ^ ,  vb-9 .78  fp«

9 2



93



FIG 10 PEAK VOLTAGE DROP VS. BUBBLE VELOCITY (CALCULATED S  MEASURED)

The agreement is  not too good fo r  the la rg e r  drops whose diam eter is  in 

the order o f  the w ire length . For these the awdel proposed would obviously  

f a l l ,  but i t  is  very good fo r  the group o f  p a r t ic le s  to which the analysis 

was lim ited .

The experim ent as performed d id  not perm it wide v a r ia tion s  in  bubble 

s iz e .  A fu rth er  comparison between theory and measurements i s  p o ss ib le  

when comparing traverse time and peak v o lta g e  with mean v e lo c it y  f o r  the 

three d i f f e r e n t  bubble s iz e s .  Comparisons o f  th is type are shown in  

F igures 9 and 10. From Figures 9 and 10 i t  is  seen that the agreement 

between the measured data and the ca lcu la te d  values is  good w ith in  mean 

v e l o c i t i e s  from 1.5 fps to  8 fp s , a c co rd in g ly  va lid a tin g  the model proposed.

CONCLUSIONS

The re s u lts  have c le a r ly  shown that bubbles o f  a c e r ta in  size  range 

may be e f f e c t i v e ly  sampled as to  th eir  s iz e  with a simple hot-w ire anemometer. 

For th is  p a r t icu la r  case (Thermo-System 1217-20 sensor) bubble s ize s  between 

400 to 1300 m icrons in  a stream with v e lo c i t i e s  between 1 .5  to 8 fp s ,  gave 

s ig n a ls  whose amplitude and duration  were a d ir e c t  measure o f  bubble s iz e .

An an a lys is  based on the assia^ttlon that the bubbles engulfed and passed 

the sensor w ith th e ir  shape and v e lo c ity  unchanged gave good agreement with 

measured va lu es.

Annum  jnrmffiNTS

The authors are a p p re c ia tiv e  fo r  con sen ts received  from P ro fessor 

K. t .  C. Eckert.
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SYMBOLS REFERENCES

a
X

a
2

b

C

Cw

D

d
b

d
w

E
P

E (t)

f ( t )

I ( t )

k

k , k 
1

Nu ,Nu
1 2

Pr
2

R

rb

r ( y , t )

r o

SE

s t

Tb ( t )

Tf  ,T£ 
r l  t 2

Te

T ( y , t )

v

Vb

y

P»

heat tra n s fe r  c o e f f i c i e n t s  per un it length  o f  the sensor exposed 
to a i r  and water phase , r e s p e c t iv e ly

temperature c o e f f i c i e n t  o f  e l e c t r i c a l  r e s i s t i v i t y

em p irica l c o e f f i c i e n t s

s p e c i f i c  heat p er  u n it  length o f  the sensor

em p irica l c o e f f i c i e n t  in  Eq. (9 )

bubble diam eter

sensor diam eter

peak vo lta g e  drop

instantaneous v o lta g e  across the sensor

h a lf  length o f  the w ire  exposed to the a i r  bubble phase

instantaneous cu rren t across the sen sor

a x ia l  thermal c o n d u c t iv ity  o f  the sen sor

heat conduction  c o e f f i c i e n t s  o f  the a i r  and o f  the w ater at 
the f i lm  temperature

e f f e c t i v e  length o f  the sensor

N usselt numbers f o r  sensor exposed to  a ir  and water phase, r e s p e c t iv e ly  

exponent in  Eq. (9 )

Prandtl number

t o t a l  sensor r e s is ta n c e

bubble radius

e l e c t r i c a l  r e s i s t i v i t y  at p o s it io n  y and a t  time t 

e l e c t r i c a l  r e s i s t i v i t y  o f  the sen sor a t temperature T0 

s e n s i t iv i t y  based on the peak v o lta g e  drop 

s e n s i t iv i t y  based on the traverse  time t 

instantaneous bubble temperature

f ilm  temperature o f  sensor exposed to  a i r  and water p h a se ,r e s p e c t iv e ly  

ambient temperature

sen sor temperature a t  p o s it io n  y and a t time t

traverse  time o f  a bubble

time

stream v e lo c ity  

bubble v e lo c ity

coord in a te  in  the a x ia l  d ir e c t io n  o f  the sen sor 
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