4,850 research outputs found

    A Molecular Line Survey of the Carbon-Rich Proto-Planetary Nebula AFGL 2688 in the 3mm and 1.3mm Windows

    Get PDF
    We present a spectral line survey of the proto-planetary nebula AFGL 2688 in the frequency ranges of 71-111 GHz, 157-160 GHz, and 218-267 GHz using the Arizona Radio Observatory 12m telescope and the Heinrich Hertz Submillimeter Telescope. A total of 143 individual spectral features associated with 32 different molecular species and isotopologues were identified. The molecules C3H, CH3CN, H2CO, H2CS, and HCO+ were detected for the first time in this object. By comparing the integrated line strengths of different transitions, we are able to determine the rotation temperatures, column densities, and fractional abundances of the detected molecules. The C, O, and N isotopic ratios in AFGL 2688 are compared with those in IRC+10216 and the Sun, and were found to be consistent with stellar nucleosynthesis theory. Through comparisons of molecular line strengths in asymptotic giant branch stars, proto-planetary nebulae, and planetary nebulae, we discuss the evolution in circumstellar chemistry in the late stages of evolution.Comment: 41 pages, 10 figures. Accepted for publication in Ap

    Propagation of highly nonlinear signals in a two dimensional network of granular chains

    Get PDF
    We report the first experimental observation of highly nonlinear signals propagating in a two dimensional system composed of granular chains. In this system one of the chains contacts two others to allow splitting and redirecting the solitary-like signal formed in the first chain. The system consists of a double Y-shaped guide in which high- and low-modulus chains of spheres are arranged in various geometries. We observed fast splitting of the initial pulse, rapid chaotization of the signal and sharp bending of the propagating acoustic information. Pulse and energy trapping was also observed in composite systems assembled from hard- and soft-particles in the branches

    Progress in classically solving ten dimensional supersymmetric reduced Yang-Mills theories

    Full text link
    It is shown that there exists an on-shell light cone gauge where half of the fermionic components of the super vector potential vanish, so that part of the superspace flatness conditions becomes linear. After reduction to (1+1)(1+1) space-time dimensions, the general solution of this subset of equations is derived. The remaining non-linear equations are written in a form which is analogous to Yang equations, albeit with superderivatives involving sixteen fermionic coordinates. It is shown that this non-linear part may, nevertheless, be solved by methods similar to powerful technics previously developed for the (purely bosonic) self-dual Yang Mills equations in four dimensions.Comment: 17 pages Latex non figure

    Fungal surface measurements: water contact angles

    Get PDF
    Non-Peer ReviewedFungal surface properties have been implicated as one of the main factors affecting fungal colonization and adhesion to plant surfaces. Characterization of fungal surfaces through hydrophobic measurements is important for understanding its function. Water contact angles are a direct and simple approach for characterization of fungal surface hydrophobicity. The objective of this study was to evaluate if utilization of undisturbed fungal cultures coupled with versatile image analysis allow for more accurate contact angle measurements. Fungal cultures were grown on agar slide media and contact angles were measured utilizing a modified microscope and digital camera setup, with Low Bond Axisymmetric Drop Shape Analysis Model (LB_ADSA) for contact angle determination. Fungal strains were categorized into hydrophobic, hydrophilic and a newly defined hydroamphiphilic class containing fungi taxa with changing hydrophobicity

    Symmetrization and Entanglement of Arbitrary States of Qubits

    Full text link
    Given two arbitrary pure states âˆŁÏ•> |\phi> and âˆŁÏˆ> |\psi> of qubits or higher level states, we provide arguments in favor of states of the form 12(âˆŁÏˆ>âˆŁÏ•>+iâˆŁÏ•>âˆŁÏˆ>) \frac{1}{\sqrt{2}}(|\psi> |\phi> + i |\phi> |\psi>) instead of symmetric or anti-symmetric states, as natural candidates for optimally entangled states constructed from these states. We show that such states firstly have on the average a high value of concurrence, secondly can be constructed by a universal unitary operator independent of the input states. We also show that these states are the only ones which can be produced with perfect fidelity by any quantum operation designed for intertwining two pure states with a relative phase. A probabilistic method is proposed for producing any pre-determined relative phase into the combination of any two arbitrary states.Comment: 6 pages, 1 figur

    Slider-Block Friction Model for Landslides: Application to Vaiont and La Clapiere Landslides

    Full text link
    Accelerating displacements preceding some catastrophic landslides have been found empirically to follow a time-to-failure power law, corresponding to a finite-time singularity of the velocity v∌1/(tc−t)v \sim 1/(t_c-t) [{\it Voight}, 1988]. Here, we provide a physical basis for this phenomenological law based on a slider-block model using a state and velocity dependent friction law established in the laboratory and used to model earthquake friction. This physical model accounts for and generalizes Voight's observation: depending on the ratio B/AB/A of two parameters of the rate and state friction law and on the initial frictional state of the sliding surfaces characterized by a reduced parameter xix_i, four possible regimes are found. Two regimes can account for an acceleration of the displacement. We use the slider-block friction model to analyze quantitatively the displacement and velocity data preceding two landslides, Vaiont and La Clapi\`ere. The Vaiont landslide was the catastrophic culmination of an accelerated slope velocity. La Clapi\`ere landslide was characterized by a peak of slope acceleration that followed decades of ongoing accelerating displacements, succeeded by a restabilizing phase. Our inversion of the slider-block model on these data sets shows good fits and suggest to classify the Vaiont (respectively La Clapi\`ere) landslide as belonging to the velocity weakening unstable (respectively strengthening stable) sliding regime.Comment: shortened by focusing of the frictional model, Latex document with AGU style file of 14 pages + 11 figures (1 jpeg photo of figure 6 given separately) + 1 tabl

    Pd/Cu Site Interchange and Non-Fermi-Liquid Behavior in UCu_4Pd

    Full text link
    X-ray-absorption fine-structure measurements of the local structure in UCu_4Pd are described which indicate a probable lattice-disorder origin for non-Fermi-liquid behavior in this material. Short Pd-Cu distances are observed, consistent with 24 +/- 3% of the Pd atoms occupying nominally Cu sites. A "Kondo disorder" model, based on the effect on the local Kondo temperature T_K of this interchange and some additional bond-length disorder, agrees quantitatively with previous experimental susceptibility data, and therefore also with specific heat and magnetic resonance experiments.Comment: 4 pages, 3 PostScript figures, to be published in PR
    • 

    corecore