268 research outputs found

    Breed of cow and herd productivity affect milk nutrient recovery in curd, and cheese yield, efficiency and daily production.

    Get PDF
    Little is known about cheese-making efficiency at the individual cow level, so our objective was to study the effects of herd productivity, individual herd within productivity class and breed of cow within herd by producing, then analyzing, 508 model cheeses from the milk of 508 cows of six different breeds reared in 41 multi-breed herds classified into two productivity classes (high v. low). For each cow we obtained six milk composition traits; four milk nutrient (fat, protein, solids and energy) recovery traits (REC) in curd; three actual % cheese yield traits (%CY); two theoretical %CYs (fresh cheese and cheese solids) calculated from milk composition; two overall cheese-making efficiencies (% ratio of actual to theoretical %CYs); daily milk yield (dMY); and three actual daily cheese yield traits (dCY). The aforementioned phenotypes were analyzed using a mixed model which included the fixed effects of herd productivity, parity, days in milk (DIM) and breed; the random effects were the water bath, vat, herd and residual. Cows reared in high-productivity herds yielded more milk with higher nutrient contents and more cheese per day, had greater theoretical %CY, and lower cheese-making efficiency than low-productivity herds, but there were no differences between them in terms of REC traits. Individual herd within productivity class was an intermediate source of total variation in REC, %CY and efficiency traits (10.0% to 17.2%), and a major source of variation in milk yield and dCY traits (43.1% to 46.3%). Parity of cows was an important source of variation for productivity traits, whereas DIM affected almost all traits. Breed within herd greatly affected all traits. Holsteins produced more milk, but Brown Swiss cows produced milk with higher actual and theoretical %CYs and cheese-making efficiency, so that the two large-framed breeds had the same dCY. Compared with the two large-framed breeds, the small Jersey cows produced much less milk, but with greater actual and theoretical %CYs, similar efficiencies and a slightly lower dCY. Compared with the average of the specialized dairy breeds, the three dual-purpose breeds (Simmental and the local Rendena and Alpine Grey) had, on average, similar dMY, lower actual and theoretical %CY, similar fat and protein REC, and slightly greater cheese-making efficiency

    Vaccine Interaction and Protection against Virulent Avian Metapneumovirus (aMPV) Challenge after Combined Administration of Newcastle Disease and aMPV Live Vaccines to Day-Old Turkeys

    Get PDF
    Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) are among the most impactful pathogens affecting the turkey industry. Since turkeys are routinely immunized against both diseases, the hatchery administration of the combined respective live vaccines would offer remarkable practical advantages. However, the compatibility of NDV and aMPV vaccines has not yet been experimentally demonstrated in this species. To address this issue, an aMPV subtype B live vaccine was administered to day-old poults either alone or in combination with one of two different ND vaccines. The birds were then challenged with a virulent aMPV subtype B strain, clinical signs were recorded and aMPV and NDV vaccine replication and humoral immune response were assessed. All results supported the absence of any interference hampering protection against aMPV, with no significant differences in terms of clinical scoring. In addition, the mean aMPV vaccine viral titers and antibody titers measured in the dual vaccinated groups were comparable or even higher than in the group vaccinated solely against aMPV. Lastly, based on the NDV viral and antibody titers, the combined aMPV and NDV vaccination does not seem to interfere with protection against NDV, although further studies involving an actual ND challenge will be necessary to fully demonstrate this hypothesis

    Molecular characterization of the meq gene of Marek\u2019s disease viruses detected in unvaccinated backyard chickens reveals the circulation of low- and high-virulence strains

    Get PDF
    Marek's disease (MD) is an important lymphoproliferative disease of chickens, caused by Gal lid alphaherpesvirus 2 (GaHV-2). Outbreaks are commonly reported in commercial flocks, but also in backyard chickens. Whereas the molecular characteristics of GaHV-2 strains from the commercial poultry sector have been reported, no recent data are available for the rural sector. To fill this gap, 19 GaHV-2 strains detected in 19 Italian backyard chicken flocks during suspected MD outbreaks were molecularly characterized through an analysis of the meq gene, the major GaHV-2 oncogene. The number of four consecutive prolines (PPPP) within the proline-rich repeats of the Meq transactivation domain, the proline content, and the presence of amino acid (aa) substitutions were determined. Phylogenetic analysis was performed using the Maximum Likelihood method. Sequence analysis revealed a heterogeneous population of GaHV-2 strains circulating in Italian backyard flocks. Seven strains, detected from birds affected by classical MD, showed a unique meq isoform of 418 aa with a very high number of PPPP motifs. Molecular and clinical features are suggestive of a low oncogenic potential of these strains. The remaining 12 strains, detected from flocks experiencing acute MD, transient paralysis, or sudden death, had shorter Meq protein isoforms (298 or 339 aa) with a lower number of PPPP motifs and point mutations interrupting PPPP. These features allow us to assert the high virulence of these strains. These findings reveal the circulation of low and high-virulence GaHV-2 strains in the Italian rural sector

    Genome sequence analysis of a distinctive Italian infectious bursal disease virus.

    Get PDF
    ABSTRACT In a recent study, an emerging infectious bursal disease virus (IBDV) genotype (ITA) was detected in IBDV-live vaccinated broilers without clinical signs of infectious bursal disease (IBD). VP2 sequence analysis showed that strains of the ITA genotype clustered separately from vaccine strains and from other IBDV reference strains, either classic or very virulent. In order to obtain a more exhaustive molecular characterization of the IBDV ITA genotype and speculate on its origin, genome sequencing of the field isolate IBDV/Italy/1829/2011, previously assigned to the ITA genotype, was performed, and the sequences obtained were compared to the currently available corresponding sequences. In addition, phylogenetic and recombination analyses were performed. Interestingly, multiple amino acid (AA) sequence alignments revealed that the IBDV/Italy/1829/2011 strain shared several AA residues with very virulent IBDV strains as well as some virulence markers, especially in the VP1 protein. Nevertheless, sequence analysis demonstrated the presence of several residues typical of IBDV strains at a low degree of virulence in the IBDV/Italy/1829/2011 strain. Although homologous recombination and reassortant phenomena may occur naturally among different IBDV strains, no evidence of those events was found in the genome of the IBDV/Italy/1829/2011 strain, which was confirmed to be a genetically distinctive IBDV genotype

    Decellularized skeletal muscles support the generation of in vitro neuromuscular tissue models

    Get PDF
    Decellularized skeletal muscle (dSkM) constructs have received much attention in recent years due to the versatility of their applications in vitro. In search of adequate in vitro models of the skeletal muscle tissue, the dSkM offers great advantages in terms of the preservation of native-tissue complexity, including three-dimensional organization, the presence of residual signaling molecules within the construct, and their myogenic and neurotrophic abilities. Here, we attempted to develop a 3D model of neuromuscular tissue. To do so, we repopulated rat dSkM with human primary myogenic cells along with murine fibroblasts and we coupled them with organotypic rat spinal cord samples. Such culture conditions not only maintained multiple cell type viability in a long-term experimental setup, but also resulted in functionally active construct capable of contraction. In addition, we have developed a customized culture system which enabled easy access, imaging, and analysis of in vitro engineered co-cultures. This work demonstrates the ability of dSkM to support the development of a contractile 3D in vitro model of neuromuscular tissue fit for long-term experimental evaluations

    A wide role for NOTCH1 signaling in acute leukemia

    Get PDF
    NOTCH1 is involved in the pathogenesis of T-acute lymphoblastic leukemia (T-ALL) carrying the very rare translocation t(7;9)(q34;q34.3). We analyzed the expression of genes belonging to NOTCH pathway, in acute leukemia primary samples and lymphoblastoid cell lines. NOTCH1 pathway activation represents a common feature of T-ALL when compared to acute myelogenous leukemia (AML) and B-cell precursor acute lymphoblastic leukemia. The contemporary expression of NOTCH1 and its ligands on cell surface contributes to high levels of pathway activity. AML primary samples show high levels of JAGGED1 expression despite the low NOTCH1 pathway activation, consistent with an autonomous JAGGED1 signaling in myeloid leukemogenesis. (C) 2004 Elsevier Ireland Ltd. All rights reserved

    Innate immune cells express IL-17A/F in acute generalized exanthematous pustulosis and generalized pustular psoriasis

    Get PDF
    Acute generalized exanthematous pustulosis (AGEP) and generalized pustular psoriasis (GPP) are rare pustular skin disorders with systemic involvement. IL-17A/F is a proinflammatory cytokine involved in various neutrophilic inflammatory disorders. Here we show that IL-17A/F is highly expressed by innate immune cells such as neutrophils and mast cells in both AGEP and GPP

    Phylogeny and evolution of infectious bursal disease virus circulating in Turkish broiler flocks

    Get PDF
    The emergence of new infectious bursal disease virus (IBDV) variants can threaten poultry health and production all over the world causing significant economic losses. Therefore, this study was performed to determine IBDV molecular epidemilogy, VP2 gene variation, and corresponding pathological lesions in IBDV infected chickens in Turkey. For this, 1855 bursa of Fabricius samples were collected from 371 vaccinated broiler flocks. Atrophia and haemorrhages were seen in the bursa Fabricius of very virulent IBDV (vvIBDV) infected chickens. Partial VP2 gene was sequenced and phylogenetic, recombination, and evolutionary analyses were performed. 1548 (83.5%) out of 1855 of bursa of Fabricius samples were IBDV positive and 1525 of those could be sequenced. The recombination analysis did not detect occurrence of any recombination event among the Turkish strains. Among 1525 sequenced samples, 1380 of them were found to be classical strains. Among 1380 classical strains, 1317 were similar to IBDV 2512, 11 to Faragher 52/70, 40 to 228 E, and 12 to Lukert strain. Out of 1525 reverse transcriptase ploymerase chain reaction positive samples, 144 of them were found to be similar to vvIBDV-VP2 gene reported to GenBank previously. The phylogenetic tree performed on a broad sequence dataset demonstrated grouping of vvIBDV Turkish strains in three different clusters, including sequences collected also from Iraq and Kuwait (Cluster 1), Indian (Cluster 2), and a distinct Turkish-only cluster (Cluster 3). The evolutionary rate estimation on branches/clades including Turkish strain mirrored the expected one for RNA viruses and no significant differences were found among different considered branches. In conclusion, results of this study indicate that vvIBDV strains similar to those circulating in various countries in the Middle East are present and undergoing evolution in chickens from Turkish broiler flocks. This point needs to be taken into account in planning adequate control strategies

    Evolution of infectious bronchitis virus in the field after homologous vaccination introduction

    Get PDF
    International audienceAbstractDespite the fact that vaccine resistance has been typically considered a rare phenomenon, some episodes of vaccine failure have been reported with increasing frequency in intensively-raised livestock. Infectious bronchitis virus (IBV) is a widespread avian coronavirus, whose control relies mainly on extensive vaccine administration. Unfortunately, the continuous emergence of new vaccine-immunity escaping variants prompts the development of new vaccines. In the present work, a molecular epidemiology study was performed to evaluate the potential role of homologous vaccination in driving IBV evolution. This was undertaken by assessing IBV viral RNA sequences from the ORF encoding the S1 portion of viral surface glycoprotein (S) before and after the introduction of a new live vaccine on broiler farms in northern-Italy. The results of several biostatistics analyses consistently demonstrate the presence of a higher pressure in the post-vaccination period. Natural selection was detected essentially on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. This evidence strongly supports the action of vaccine-induced immunity in conditioning viral evolution, potentially leading to the emergence of new vaccine-escape variants. The great plasticity of rapidly-evolving RNA-viruses in response to human intervention, which extends beyond the poultry industry, is demonstrated, claiming further attention due to their relevance for animal and especially human health
    • …
    corecore