14 research outputs found

    Build orientation optimization problem in additive manufacturing

    Get PDF
    Additive manufacturing (AM) is an emerging type of production technology to create three-dimensional objects layer-by-layer directly from a 3D CAD model. AM is being extensively used by engineers and designers. Build orientation is a critical issue in AM since it is associated with the object accuracy, the number of supports required and the processing time to produce the object. Finding the best build orientation in the AM will reduced significantly the building costs and will improve the object accuracy. This paper presents an optimization approach to solve the part build orientation problem considering the staircase effect, support area characteristics and the build time. Two global optimization methods, the Electromagnetism-like and the Stretched Simulated Annealing algorithms, are used to study the optimal orientation of four models. Preliminary experiments show that both optimization methods can effectively solve the build orientation problem in AM, finding several global solutions.This work has been supported and developed under the FIBR3D project - Hybrid processes based on additive manufacturing of composites with long or short fibers reinforced thermoplastic matrix (POCI-01-0145-FEDER-016414), supported by the Lisbon Regional Operational Programme 2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Improving additive manufacturing performance by build orientation optimization

    Get PDF
    Additive manufacturing (AM) is an emerging type of production technology to create three-dimensional objects layer-by-layer directly from a 3D CAD model. AM is being extensively used in several areas by engineers and designers. Build orientation is a critical issue in AM since it is associated with the part accuracy, the number of supports required and the processing time to produce the object. This paper presents an optimization approach to solve the part build orientation problem taking into account some characteristics or measures that can affect the accuracy of the part, namely the volumetric error, the support area, the staircase effect, the build time, the surface roughness and the surface quality. A global optimization method, the Electromagnetism-like algorithm, is used to solve the part build orientation problem.The authors are grateful to the anonymous referees for their fruitfulcomments and suggestions. This work has been supported and developed under the FIBR3Dproject - Hybrid processes based on additive manufacturing of composites with long or shortfibers reinforced thermoplastic matrix (POCI-01-0145-FEDER-016414), supported by theLisbon Regional Operational Programme 2020, under the PORTUGAL 2020 PartnershipAgreement, through the European Regional Development Fund (ERDF). This work hasbeen also supported by national funds through FCT - Funda ̧c ̃ao para a Ciˆencia e Tecnologiawithin the Project Scope: UID/CEC/00319/201

    A multi-objective approach to solve the build orientation problem in additive manufacturing

    No full text
    Additive manufacturing (AM) has been increasingly used in the creation of three-dimensional objects, layer-by-layer, from three-dimensional (3D) computer-aided design (CAD) models. The problem of determining the 3D model printing orientation can lead to reduced amount of supporting material, build time, costs associated with the deposited material, labor costs, and other factors. This problem has been formulated and studied as a single-objective optimization problem. More recently, due to the existence and relevance of considering multiple criteria, multi-objective approaches have been developed. In this paper, a multi-objective optimization approach is proposed to solve the part build orientation problem taking into account the support area characteristics and the build time. Therefore, the weighted Tchebycheff scalarization method embedded in the Electromagnetism-like Algorithm will be used to solve the part build orientation bi-objective problem of four 3D CAD models. The preliminary results seem promising when analyzing the Pareto fronts obtained for the 3D CAD models considered. Concluding, the multi-objective approach effectively solved the build orientation problem in AM, finding several compromise solutions.This work has been supported and developed under the FIBR3D project - Hybrid processes based on additive manufacturing of composites with long or short fibers reinforced thermoplastic matrix (POCI-01-0145-FEDER-016414), supported by the Lisbon Regional Operational Programme 2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019

    Path generation, control, and monitoring

    Get PDF
    A critical issue in additive manufacturing (AM) is the control of the printer actuators such that the deposition of material (or a few different materials) takes place in an organized way. Typically, the actuators are connected with a low-level controller that can receive computer numerical control (CNC) instruction. A 3D printer controller is, usually, expected to receive a set of CNC instructions in a format called G-Code, where a set of control instructions is provided. These instructions include the necessary settings for the printer to work (e.g., a temperature setup) and printer head movement instructions (e.g., the x-, y-, and z-positions in reference axes). The set of the printer actuators positions, where some operations take place, is called the printer path. Path planning or generation corresponds to the computation of the printer head trajectory during a period of time where the object is to be built. A five-degree of freedom/5-axis 3D printer that considers a hybrid process based on additive manufacturing of composites with long or short fibers reinforced thermoplastic matrix is being addressed in this book. The 5-axis printer considers the three usual degrees of freedom plus two additional degrees of freedom, located at the printer table. While software for 3D printing is still possible to be used, full advantage of the printer potential demands for new path generation strategies. We start in Sect. 6.1 by introducing the reader to the optimal orientation of objects, where object orientation is optimal w.r.t. some objective functions that measure the printing performance. Since we are majorly interested in a 5-axis printer control, we present a printer emulator in Sect. 6.2, which allows us to monitor the printing process. Path generation is addressed in Sect. 6.3. We aim to provide flat and curved path planning to take advantage on the 5-axis printer, and in Sect. 6.4, we provide a strategy to print complex objects. The proposed approach for path planning can also be used for inspecting the printed objects by a non-destructive test, and we introduce this topic in Sect. 6.5.(undefined

    A life-cycle assessment framework for\ua0stereolithography

    No full text
    Additive manufacturing is nowadays applied in many different fields, ranging from amateur prototyping to industrial production. In particular, small-sized stereolithographic apparatuses are widely spread due to their low cost, high accuracy and easiness of use. Despite the large diffusion of this technology, its sustainability aspects are not enough investigated, and a general lack of tools for the life-cycle assessment can be observed. The present paper proposes a framework for the development of a life-cycle impact metrics of stereolithography production in a certain area. All the contributions to the overall environmental impact of the manufacturing process are attributed to two main parameters, i.e. the amount of polymerised resin and the time of the process, thus allowing to easily integrate the results within the life-cycle assessment of a generic part. The parametrisation of the LCA also allows getting an estimation of the life-cycle impact from a digital representation of the part
    corecore