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Abstract Additive manufacturing (AM) is an emerging type of production
technology to create three-dimensional objects layer-by-layer directly from a
3D CAD model. AM is being extensively used in several areas by engineers
and designers. Build orientation is a critical issue in AM since it is associated
with the part accuracy, the number of supports required and the processing
time to produce the object.

This paper presents an optimization approach to solve the part build ori-
entation problem taking into account some characteristics or measures that
can affect the accuracy of the part, namely the volumetric error, the support
area, the staircase effect, the build time, the surface roughness and the surface
quality. A global optimization method, the Electromagnetism-like algorithm,
is used to solve the part build orientation problem.
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1 Introduction

Rapid Prototyping (RP) is a current technology that manufactures models in
less time than any other current method. This technology has grown over the
years and has been implemented in many model manufacturing companies due
to its effectiveness in reducing the building time and used material [1].

The RP can be divided into two types of manufacture processes, the ad-
ditive manufacturing (AM) and the subtractive manufacturing. The AM con-
sists of a set of technologies intended for the manufacture of 3D objects by
depositing material layer-by-layer while the subtractive manufacturing builds
the 3D objects by successively cutting a solid block of material. The AM has
the ability to produce parts with complex shapes using different materials in
the composition of the part when compared to the subtractive manufacturing
technique [2]. Furthermore, AM is a sustainable and environmentally friendly
technology, currently widely used [3].

The AM, also known as 3D printing or layered manufacturing, started
in the years 80 in Japan. Stereolithography (SLA) is an AM process, which
uses a liquid and a photosensitive polymer, and provides accurate models
embracing fine details and a smooth surface finish. The first commercially
available SLA printer was patented in 1986 by Charles W. Hull, who founded
3D Systems Inc. whose aim was to facilitate rapid prototyping of plastic parts
[4]. Over the last two decades, several processes have been introduced in the
layered manufacturing, in addition to SLA, based on powder, solids and liquids
[5], such as fused deposition modeling (FDM), selective laser sintering, laser
cladding, laminated object manufacturing, laser vapor deposition, etc [6]. The
type of additive manufacturing technology involved in this work is the FDM,
which is defined as a process that creates a three-dimensional object using a
thermoplastic filament, which is heated to its melting point and then extruded,
layer by layer.

Currently, additive manufacturing processes are being used in several ar-
eas such as medical sciences (e.g. dental restorations and medical implants),
jewellery, footwear industry, automotive industry and aircraft industry [7,8].
With this type of technology it is possible to build very complex geometry
parts without requiring much post-processing. Typically, the AM is character-
ized by four processing stages: model orientation, creation of supports, slicing,
and path planning [9]. The definition and study of the build orientation of
a given part through additive manufacturing technology can improve many
aspects such as the build time, the surface roughness or the surface accuracy
of the model, refining the quality of the final model [10].

The automatic selection of the orientation manages to reduce or eliminate
errors involved throughout the model construction process [11]. The selection
of the best build orientation is a very important factor because affects the
printing time and object quality, amount of supporting material, shrinkage,
distortion, resin flow, material cost, support volume, support area, among
others [10,12,13], as can be seen in Fig. 1.
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Fig. 1: Impact of different build orientations.

In the literature, a number of studies have been carried out in order to
select the optimal build orientation for a 3D CAD model. Alexander et al. [14]
used different criteria like stair step error, build height, volume of supports,
stability of object, among others, to determine the optimal part build orien-
tation and they concluded that the build direction has a significant effect on
many key characteristics, such as the final cost, accuracy and surface rough-
ness of the model. Brika et al. [15] used a genetic algorithm and considered
mechanical properties, support structures, surface roughness, build time and
cost to optimize the build orientation. An optimization model developed to
improve the build orientation based on the minimization of support structures
can be found in [16]. Frank and Fadel [17] proposed an expert system tool that
considers the quality of the surface finish, the build time and the amount of
support structures as the most important factors that affect the production of
the part and interacts with the user to recommend the best direction to build.
A criterion for evaluating good build orientations for SLA process based on
factors such as the build height, number of supports and build area was used
by [18]. Masood et al. [19] suggested an approach to select the best part build
orientation for the FDM process based on minimizing the volumetric staircase
error of the CAD model. The work of Zhang et al. [20] presented a demon-
stration to obtain the best orientation considering the minimum volume value
of the part supports. They used specific restrictions and characteristics by ap-
plying different materials to the construction of the part. This method aims
to increase quality by reducing production time and cost.

This work aims to determine the optimal build orientation of 3D CAD
models in order to improve the surface finish accuracy, reducing the number
of supports generated and the build time, and consequently decreasing the
final costs. In this study, the characteristics of the model accuracy will be
evaluated using six different measures: the volumetric error, the support area,
the staircase effect, the build time, the surface roughness and the surface
quality of the model. The Electromagnetism-like (EM) optimization method
will be used to solve the build orientation problem. The EM algorithm is a
population-based stochastic search method for global optimization that mimics
the behavior of electrically charged particles [21].

Numerical experiments showing the effectiveness of the proposed approach
on six 3D CAD models are presented. Firstly, for a given model, an experiment
to define the suitable number of points in the population and the number of
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function evaluations to be used in the stopping criterion was developed. Then,
the computational experiments considering the build orientation optimization
of all models are presented. The best solutions obtained for each function, and
in each model, are also presented and discussed in terms of printing time and
amount of deposited material.

This paper is organized as follows. Section 2 presents the part orientation
optimization problem. It begins with the formulation of the problem, followed
by the specification of each of the measures used to optimize the build orien-
tation, and finally the description of the EM method that will be used. The
information for each 3D model used in this paper is sketched in Sect. 3 In Sect.
4 the results obtained for each function and for each model are illustrated and
a final discussion of the results is made in Sect. 5. Finally, Sect. 6 concludes
the paper and some possible future approaches are enumerated.

2 Part orientation optimization

In this section the part orientation problem is presented. First, cusp height and
other variables to define the optimization problem are introduced. Then, the
optimization problem is formulated and the description of the six measures, or
objective functions, used in the part orientation problem are explained. The
objective functions used in this study are: the volumetric error, the support
area, the staircase effect, the build time, the surface roughness and the surface
quality. In the end of this section, the Electromagnetism-like algorithm used
to solve the part orientation problem is presented.

2.1 Cusp height

A major source of structure inaccuracy is due to the staircase effect. The
staircase effect can arise when the thickness of the layers is uniform on curved
surfaces, when the layers shrink, since the material of the layers is deposited
from the bottom up and the upper layers change the shape of the inferiors,
and also when the laser angle of the printer is not correct. This effect causes
dimensional errors and roughens the surface of the object. The error associated
with the staircase effect occurs due to the layer thickness and the slope of the
part surface [22]. The maximum deviation between part surface and printed
object caused by the staircase effect is described as the cusp height (CH),
which is calculated by the maximum deviation from the layered part to the
CAD surface measured in the normal direction to CAD surface, as can be seen
in Fig. 2.

The cusp height depends on the angle α formed by the slicing direction d
and the model surface normal, and on the layer thickness, t. Thicker layers
and/or higher values of cos(α) will produce larger values for cusp height and
consequently a more inaccurate surface will appear [14]. The cusp height is
given by CH = t cos(α).
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Fig. 2: Cusp height.

2.2 Problem formulation

The optimization problem aiming to solve the build orientation problem of a
3D CAD model is related to the computation of the optimal slicing direction
d, which is a normalized vector (i.e. ‖d‖ = 1). An equivalent mathematical
formulation is to compute the rotation along the x-axis and y-axis, since the
base platform (z-axis) is fixed. In this study, the direction d = (0, 0, 1)T was
considered as the slicing direction after a rotation along θ = (θx, θy) angles,
where each angle is between 0◦ and 180◦.

The general build orientation optimization problem is given by:

min f(θx, θy)
s.t. 0 ≤ θx ≤ 180

0 ≤ θy ≤ 180
(1)

where f(θx, θy) is the objective function to be minimized and θx and θy are
the rotation angles along the x-axis and the y-axis, respectively.

2.3 Objective functions

The surface finish of an object obtained through additive manufacturing pro-
cess is highly important. Different measures to determine the best build orien-
tation for an improvement of the surface finish can be considered taking into
account factors such as the part accuracy, building time, structure support,
roughness, part stability, etc. In the following, six measures are described, each
of which will be an objective function to be minimized in (1).

2.3.1 Volumetric error

One of the problems affecting the surface finish of a part is the staircase effect.
The layer thickness have an impact on the staircase effect, since the smaller the
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layer thickness of the model the staircase effect will also be smaller, resulting
in a better surface finish. This effect is related to the cusp height that is based
on the maximum distance between the part surface and the model surface [23].

By using the cusp height to measure the part accuracy, the surface quality
can be determined from the object geometry, build direction and layer thick-
ness. When the normal model surface is close to be collinear with the slicing
direction, the volumetric difference (difference between CAD model and the
slice volume) is very high, giving a low surface smoothness. However if the
normal of the model surface is close to be perpendicular to the slicing direc-
tion the volumetric difference is very low, giving a high surface smoothness.
In this context, an algorithm that slices the model along the slicing direction
d can use the volumetric error to maximize the part smoothness.

The volumetric error in a rapid prototyping process is the difference be-
tween the volume of material used in the construction of the part and the
volume of the CAD model [19,24,25]. Masood et al. [26] studied the volu-
metric error in a cylinder model. Several authors used the volumetric error
as an part accuracy measure. The volumetric error have a different value for
different orientations of the part, due to the process of building in layers.

The volumetric error, V E, to be minimized in each layer stem from stair-
case effect is given by

V E =
∑
i

t2
∣∣dTni∣∣ Ai

2
(2)

where t is the slicing height of the layer, i is the triangular facet, d is the unit
vector of the direction of construction of the triangular facet, ni is the unit
normal vector of the triangular facet and Ai is the area of each triangular
facet [24].

2.3.2 Support area

The amount of supports affects the construction time of the part as well as
the surface accuracy. This can be measured by the support area or support
volume.

The support volume is the volume of the region that is between the layer
under construction and the platform of the 3D printer, and is computationally
very complex to calculated.

The support area mostly affects post-processing and superficial finish. This
is defined as the total area of the downward-facing facets, that is, the quantity
of supports to be used in the construction of the part, measured through the
total contact area of the external supports with the object. Computationally,
the support area is simpler and more important than the support volume when
it comes to part accuracy [24,25].

Thus, the support area, SA, can be mathematically formulated as

SA =
∑
i

Ai
∣∣dTni∣∣ δ (3)



Improving additive manufacturing performance by build orientation optimization 7

where i is the triangular facet, Ai is the area of each triangular facet, d is the
unit vector of the direction of construction of the triangular facet, ni is the
normal unit vector of each triangular facet and δ is the initial function [24]
given by

δ =

1, if dTni < 0

0, if dTni > 0.

2.3.3 Staircase effect

In [27], the authors studied the staircase effect of a model based on the devia-
tion between the actual and desired surfaces. That is, the greater the deviation
between the two surfaces (actual and desired) the greater the length of the step
and the lower the orientation of the construction of the part. The length of
the step for each triangle i is given by

Li =


t

tan(αi)
, if tan (αi) 6= 0

0, if tan (αi) = 0
(4)

where t is the layer thickness and αi is the angle between triangle facet i of
model surface and the direction d.

The staircase effect, SE, is defined by

SE =
∑
i

Li. (5)

2.3.4 Build time

Canellidis et al. [1] considered that the build time includes the time required
to construct the object as well as the time required for support removal and
surface finishing. The major structure of the overall build time is the creation
time of a designed object, whereas the time required for removal of supports
and surface finishing is only a minor fraction of build time.

Jibin [24] considered the build time as the scanning time and the prepara-
tion time. The scanning time includes solid scanning time, contour scanning
time and support scanning time, where the solid and contour scanning times
are independent of the part building direction and the support scanning time
depends on the volume of supports. The preparation time of the object en-
compasses the precise time for the platform to move downwards during the
construction of each layer, the scraping time of this and other times of prepa-
ration of the part. This time depends on the total number of slices of the
solid, the number of slices dependent on the height of the construction direc-
tion of a particular part of the object. Therefore, minimizing this height and
the number of layers, can decrease the build time of the solid [24,25].

The build time, BT , is given by

BT = max
i

(
dT v1i , d

T v2i , d
T v3i

)
−min

i

(
dT v1i , d

T v2i , d
T v3i

)
(6)
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where d is the direction vector and v1i , v
2
i , v

3
i are the vertex triangle facets i

(see [24] for details).

2.3.5 Surface roughness

The build orientation, layer thickness and the support structures are the most
important factors that affect the surface roughness [22,27,28]. The surface
roughness is the main variable of the surface quality of 3D objects, in additive
manufacturing.

Several authors have presented different approaches to define the surface
roughness [29–33]. Pandey et al. [34,35] concluded that for the same build
orientation, the surface roughness of the supported faces are approximately
1.2 times facing upward. They formalized one of the most accepted strategies
for the calculation of surface roughness in the FDM processes, concluding that
the roughness can be calculated by different formulas, given a certain range
of angles. Behnam [36] proposed a combination of strategies to evaluate the
surface roughness value, that will be used in this study.

The surface roughness, RA, is defined by the angle that each normal surface
makes with the vertical direction, for a given layer thickness, and is given by

RAi =



70.82
t

cos(αi)
, if 0◦ ≤ αi ≤ 70◦

1

20

(
90RA70

i − 70RA90
i + αi

(
RA90

i −RA70
i

))
, if 70◦ < αi < 90◦

117.6 t, if αi = 90◦

70.82
t

cos(αi − 90)
(1 + w), if 90◦ < αi ≤ 135◦

1000

2
t

∣∣∣∣cos((90− αi)− φ)

cos(φ)

∣∣∣∣ , if 135◦ < αi ≤ 180◦

(7)
where t is the thickness of the layer, αi is the angle between the unit vector of
the direction and the normal unit vector for each triangle facet i, RA70

i and
RA90

i are the values of RAi for the angle 70◦ and 90◦, respectively. The w is
a dimensionless adjustment parameter for supported facets, φ is a phase shift
in the range of 5◦ ≤ φ ≤ 15◦ depending on the layer thickness. The value
70.82 in the first equation of (7) refers to a value inside the confidence interval
(69.28 ∼ 72.36) as proposed in [37], w equals to 0.2 as in [35] and φ is equal
to 5◦, as in [36]. The average surface roughness can be calculated by (8) and
the lower your value is the better the surface quality of the object

RA =

∑
i (RAi Ai)∑

iAi
(8)

where RAi is the roughness (in µm) of each triangular surface i and Ai is the
area of triangular facet (see [36] for details).
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2.3.6 Surface quality

The surface quality of the parts is one of the most studied characteristics in
3D printing processes that can be affected by the part orientation [14,17,38].
Several studies improved the surface quality, when optimizing the building
time, accuracy and stability of the part [11,26] and focused their work on the
surface finish of the part (roughness, cost and volumetric error).

The build orientation of a given part determines which faces are subjected
to the staircase effect and which are in contact with the supports. These factors
deteriorate the surface quality of the part. Thus, according to [14] the surface
quality for each each triangle i, is given by

Qi = |cos(αi)| t Ai (9)

where t is the layer thickness and Ai is the area of each triangle i.
Thus, the total surface quality, SQ, is given by

SQ =

∑
iQi∑
iAi

. (10)

2.4 Electromagnetism-like algorithm

The Electromagnetism-like algorithm, developed by Birbil and Fang [21], is a
population-based stochastic search method for bound constrained global opti-
mization problems that mimics the behaviour of electrically charged particles.
The method uses an attraction-repulsion mechanism to move a population of
points towards optimality.

The EM algorithm simulates the electromagnetism theory of physics by
considering each point in the population as an electrical charge that is released
to the space. The charge of each point is related to the objective function value
and determines the magnitude of attraction of the point over the others in the
population. The better the objective function value, the higher the magnitude
of attraction. The charges are used to find a direction for the movement of
each point. The regions that have higher attraction will signal other points to
move towards them. In addition, a repulsion mechanism is also introduced to
explore new regions for even better solutions [21].

The EM algorithm comprises three main procedures: “Initialization”, “Com-
pute Force” and “Move Points”. The main steps of the EM algorithm for bound
constrained optimization are presented in the Algorithm 1.

The “Initialization” procedure starts by randomly generating a sample of
POP points. Each coordinate of a point θi = (θix, θ

i
y) (i = 1, . . . , POP ) is

uniformly distributed between the lower and upper bounds, i.e., θix = lx +
λ(ux − lk) and θiy = ly + λ(uy − ly) where lx = ly = 0◦, ux = uy = 180◦ and
λ ∼ U(0, 1). Then, the objective function value for each point is calculated
and the best point of the population, θbest = (θbestx , θbesty ), is identified as well

as its corresponding objective function value, f(θbest).
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“Initialization”:
Randomly generate the population
Evaluate the population and select the best point

while maximum number of function evaluations is not reached do
“Compute Force”:

Compute the charges
Compute the total forces

“Move Points”:
Move the points except the best point

Evaluate the new population and select the best point
end

Algorithm 1: EM algorithm

In the “Compute Force” procedure, each particle charge that determines
the power of attraction or repulsion for each point is calculated by

qi = exp

(
−2

f(θi)− f(θbest)∑POP
k=1 (f(θk)− f(θbest))

)
, i = 1, . . . , POP .

In this way the points that have better objective function values possess higher
charges. After the charge calculation, the total force vector F i exerted on each
point is then calculated by adding the individual component forces between
any pair of points

F i =

POP∑
j=1, j 6=i

F ij =

{
(θj − θi) qiqj

‖θj−θi‖2 if f(θj) < f(θi) (attraction)

(θi − θj) qiqj

‖θj−θi‖2 if f(θj) ≥ f(θi) (repulsion)
.

The “Move Points” procedure uses the total force vector to move each
point, θi, in the direction of the force by a random step length λ assumed to be
uniformly distributed in [0, 1]. The best point, θbest, is not moved and is carried
out to the subsequent iteration. To maintain feasibility, the force exerted on
each point is normalized and scaled by the allowed range of movement towards
the lower bound or the upper bound, for each coordinate. Thus, for each point
i = 1, 2, . . . , POP and i 6= best

(θix, θ
i
y) =

{
(θix, θ

i
y) + λ F i

‖F i‖ ((ux, uy)− (θix, θ
i
y)) if F i > 0

(θix, θ
i
y) + λ F i

‖F i‖ ((θ
i
x, θ

i
y)− (lx, ly)) otherwise

.

A fully description of the EM algorithm can be found in [39] as well as the
used code implemented in the MATLAB R© software.

3 Models description

In this section, we present the 3D CAD models that will be used in this study:
Dryer, Excavator Head, Fin, Keychain, Lego Curved and Rod. Initially, the
original design was drafted in a CAD program (generating the CAD model),
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where it is then converted to a STL (Standard Tessellation Language) file,
since this is the type of file used in 3D printing. The STL file format, devel-
oped by Hull at 3D systems, has been accepted as the gold standard for data
transfer between the CAD software and a 3D printer [4]. The STL file format
approximates the surfaces of a solid model by a polyhedral representation of
a 3D object using triangular facets, where the coordinates of the vertices are
defined in a text file. The STL files describe only the surface geometry, not
representing color, texture, or other common attributes of the CAD model.
Thus, the STL file represents the 3D solid object using triangular facets. The
more complex the model is, the greater the number of triangular facets.

Figure 3 depicts the models studied in this paper. As can be seen, some of
the models are symmetrical, so different orientations of the model on the x-axis
and y-axis (keeping the z-axis fixed) can give the same build orientation.

(a) Dryer (b) Excavator Head (c) Fin

(d) Keychain (e) Lego Curved (f) Rod

Fig. 3: Models used in the study.

The characteristics of each model are presented in Table 1. The ”Size” (in
mm) gives the measures, width × height × depth, of the model when (0, 0) is
the initial orientation angle in the x-axis and y-axis, in degrees; ”Volume” (in
cm3) is the volume of the model, the number of triangles is given in the column
”Triangles” and ”Slices” shows the number of slices for a layer thickness of
0.2mm.

4 Computational experiments

This section shows the numerical results obtained for the six models under
study. Firstly, the setting of the EM parameters, using Excavator Head model,
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Table 1: Characteristics of the models.

Size Volume Triangles Slices

Dryer 119.3 × 171.3 × 60.0 69.9 110522 841
Excavator Head 30.0 × 23.8 × 57.5 6.7 552 100

Fin 121.5 × 53.9 × 16.0 33.3 15370 256
Keychain 23.0 × 81.9 × 81.9 21.9 18030 400

Lego Curved 48.0 × 88.0 × 48.0 16.2 1560 441
Rod 64.0 × 50.0 × 50.0 11.7 8636 225

is analysed. Then, for each model, the solution of the optimization problem
(1) is reported, considering each objective function, V E, SA, SE, BT , RA
and SQ. Finally, the numerical results and simulations are discussed.

4.1 Setting Electromagnetism-like parameters

In order to set the stopping criterion parameter and population size the Ex-
cavator Head model will be used. The results for the Excavator Head model
will be presented for different population values (POP = {5, 10, 20}) and
different values for the maximum number of function evaluations (NFE =
{500, 1000, 2000}). Since the EM is a stochastic algorithm, 30 runs for each
pair of POP and NFE values were performed.

Table 2 presents the success rate for each objective function, that is, the
percentage of runs that achieved a global optimum solution for each POP and
NFE, and the corresponding average value (Avg SR).

Table 2: Success rate for the Excavator Head model.

POP NFE VE SA SE BT RA SQ Avg SR

5 500 10% 13% 17% 60% 100% 30% 38%
10 500 17% 7% 10% 43% 100% 60% 40%
20 500 10% 23% 13% 83% 100% 77% 51%

5 1000 3% 10% 37% 60% 100% 63% 46%
10 1000 7% 10% 33% 70% 100% 87% 51%
20 1000 7% 23% 27% 80% 100% 100% 56%

5 2000 10% 7% 100% 67% 100% 57% 57%
10 2000 7% 7% 100% 80% 100% 87% 64%
20 2000 90% 83% 100% 90% 100% 100% 94%

As can be visualized in Table 2 the best average success rate of 94% was
obtained when POP = 20 and NFE = 2000. These parameters were then
selected to be applied in the other models studied in this paper. In addition, it
can also be concluded that the objective functions that had the highest success
rate for the different combinations are RA and SQ.
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The success rate for each model with the parameters previously selected
(POP = 20 and NFE = 2000) is displayed in Table 3. It is possible to

Table 3: Success rate for all models.

VE SA SE BT RA SQ

Dryer 100% 93% 100% 83% 100% 100%
Excavator Head 90% 83% 100% 90% 100% 100%

Fin 47% 20% 100% 100% 100% 100%
Keychain 53% 13% 100% 100% 100% 100%

Lego Curved 67% 87% 100% 67% 100% 100%
Rod 93% 100% 43% 100% 100% 100%

conclude that the objective functions RA and SQ can achieve an average
success rate of 100%. Regarding the objective SA function, it was verified
that it obtained a lower average success rate (66%). Overall, for POP = 20
and NFE = 2000 all models obtained a high average success rate of over 75%.
As for the Rod model, it was concluded that it was the model with the highest
average success rate (89%) when compared to the other models under study.

4.2 Numerical results for all models

In this section, the numerical results for each objective function (V E, SA, SE,
BT , RA and SQ) and for each model described in Sect. 3 are presented. The
numerical tests were made considering the selected EM parameters, POP = 20
and NFE = 2000.

Table 4 shows the optimal solutions found by the Electromagnetism-like
algorithm that represent different build orientations, θ∗ = (θ∗x, θ

∗
y), the op-

timum objective function value, f(θ∗), and the number of optimal solutions
obtained by the optimization method, NS, even if they have the same orien-
tation. It is possible to verify that the Rod model was the one that found
a higher number of optimal solutions. In addition, the V E and SQ objec-
tive functions obtained the same solutions for five models (Dryer, Excavator
Head, Keychain, Lego Curved and Rod) and the solutions identified in the SA
objective function were also found by V E objective function.

Since most of the solutions found by the optimization method have the
same print orientation, Fig. 4 presents two different solutions that correspond
to the same build orientation for the Rod model.

(a) (b)

Fig. 4: Optimal solutions for the Rod model.
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Table 4: Optimal orientations for all models.

VE SA SE BT RA SQ

Dryer
θ∗

(0,0)
(180,0)

(180,0)
(0,25)
(0,155)

(90,180) (90,180)
(0,0)

(180,0)
f(θ∗) 1.8E+02 4.5E+03 1.5E+04 6.0E+01 2.7E+01 2.5E-02
NS 4 2 4 2 2 4

Excavator
Head

θ∗
(55,0)

(55,180)
(55,0)

(55,180)
(90,30)
(90,150)

(175,180)
(175,0)

(135,140)
(135,40)

(55,0)
(55,180)

f(θ∗) 3.8E+01 9.5E+02 7.2E+01 2.1E+01 2.6E+01 6.2E-02
NS 2 2 2 2 2 2

Fin
θ∗

(0,0)
(180,0)

(0,0) (0,60) (90,0)
(120,180)

(55,0)
(90,90)

f(θ∗) 1.7E+01 1.3E-01 5.5E+02 1.6E+01 2.1E+01 2.5E-02
NS 4 2 2 2 2 5

Keychain
θ∗ (135,180) (135,180)

(140,10)
(140,170)

(45,90) (45,90) (135,180)

f(θ∗) 3.6E+01 8.9E+02 2.2E+03 2.3E+01 2.2E+01 2.6E-02
NS 2 2 2 5 1 2

Lego
Curved

θ∗
(90,90)
(0,90)

(90,90)
(0,90)

(135,180)
(135,0)

(65,180)
(65,0)

(50,160)
(50,20)

(90,90)
(0,90)

f(θ∗) 8.3E+00 2.1E+02 2.0E+02 3.4E+01 2.2E+01 2.1E-02
NS 5 5 2 2 2 5

Rod
θ∗ (0,180)

(0,180)
(0,0)

(90,30)
(30,150)
(30,30)

(180,150)

(30,30)
(100,150)
(180,150)

(90,130)
(30,50)
(180,50)

(0,180)
(0,0)

f(θ∗) 2.5E+01 6.2E+02 1.2E+03 4.6E+01 2.4E+01 4.2E-02
NS 6 7 7 5 4 6

For each model, Tables 5-10 present the objective function values for all
obtained solutions. The values in bold represent the optimal build orienta-
tions found by the Electromagnetism-like algorithm for that specific objective
function.

Table 5: Objective function values for each solution of Dryer model.

VE SA SE BT RA SQ

(0,0) 1.82E+02 4.64E+03 2.31E+04 1.71E+02 3.94E+01 2.54E-02
(180,0) 1.82E+02 4.46E+03 2.31E+04 1.71E+02 3.94E+01 2.54E-02
(0,25) 5.42E+02 1.35E+04 1.53E+04 1.93E+02 4.48E+01 5.82E-02
(0,155) 5.42E+02 1.35E+04 1.53E+04 1.93E+02 4.48E+01 5.82E-02
(90,180) 1.17E+03 2.93E+04 4.91E+04 6.00E+01 2.70E+01 1.26E-01

Observing Table 5, the solution that optimizes more objective functions
(V E, SA, SQ) at the same time was (180, 0).

According to the Table 6 it can be concluded that the objective functions
V E, SA and SQ obtained the same optimal solutions (55, 0) and (55, 180).
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Table 6: Objective function values for each solution of Excavator Head model.

VE SA SE BT RA SQ

(55,0) 3.82E+01 9.50E+02 2.51E+02 5.56E+01 3.11E+01 6.22E-02
(55,180) 3.82E+01 9.50E+02 2.51E+02 5.56E+01 3.11E+01 6.22E-02
(90,30) 6.07E+01 1.52E+03 7.17E+01 5.88E+01 2.81E+01 9.81E-02
(90,150) 6.07E+05 1.52E+03 7.17E+01 5.88E+01 2.81E+01 9.81E-02
(175,180) 5.58E+01 1.40E+03 2.49E+02 2.14E+01 2.43E+01 9.02E-02
(175,0) 5.58E+01 1.39E+03 2.49E+02 2.14E+01 2.43E+01 9.02E-02

(135,140) 7.34E+01 1.84E+03 8.14E+01 4.10E+01 2.58E+01 1.19E-01
(135,40) 7.34E+01 1.84E+03 8.14E+01 4.10E+01 2.58E+01 1.19E-01

Fig. 5: Graph of SE objective function using the Fin model.

For the (175, 180) and (175, 0) orientations, the objective function RA has
smaller values than the ones found by the EM algorithm. This means that the
Electromagnetism-like algorithm was not able to identify these global solutions
and was trapped in local solutions (135,140) and (135,40).

Table 7: Objective function values for each solution of Fin model.

VE SA SE BT RA SQ

(0,0) 1.74E+01 1.31E-01 n.d. 5.39E+01 3.68E+01 7.05E-02
(180,0) 1.74E+01 8.69E+02 n.d. 5.39E+01 3.68E+01 7.05E-02
(0,60) 4.71E+01 1.18E+03 5.50E+02 1.12E+02 4.16E+01 4.51E-02
(90,0) 1.06E+02 2.64E+03 n.d. 1.60E+01 2.20E+01 1.36E-01

(120,180) 1.51E+02 3.77E+03 2.85E+03 3.39E+01 2.11E+01 1.44E-01
(55,0) 1.48E+02 3.71E+03 3.96E+03 3.74E+01 2.11E+01 1.42E-01
(90,90) 2.44E+01 5.94E+02 n.d. 1.22E+02 3.95E+01 2.52E-02

For the Fin model (see Table 7), the build orientation (0, 0) is the one that
optimizes more objective functions at the same time, namely V E and SA.
The n.d. represents a not defined value for that solution, since SE objective
function has a discontinuity in that points, as can be seen in Fig. 5.

Table 8: Objective function values for each solution of Keychain model.

VE SA SE BT RA SQ

(135,180) 3.57E+01 8.92E+02 2.67E+03 1.11E+02 3.36E+01 2.63E-02
(140,170) 6.21E+01 1.55E+03 2.17E+03 1.11E+02 4.90E+01 4.54E-02
(45,90) 1.25E+02 3.13E+03 n.d. 2.30E+01 2.23E+01 1.51E-01

In Table 8 is possible to verify that (135, 180) is the solution where three
objective functions have the global minimum (V E, SA and SQ).
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Table 9: Objective function values for each solution of Lego Curved model.

VE SA SE BT RA SQ

(90,90) 8,29E+00 2.07E+02 3.19E+02 4.80E+01 2.94E+01 2.12E-02
(0,90) 8.29E+00 2.07E+02 3.19E+02 4.80E+01 2.94E+01 2.12E-02

(135,180) 1.58E+02 3.91E+03 2.02E+02 9.50E+01 2.69E+01 1.07E-01
(135,0) 1.58E+02 3.99E+03 2.02E+02 9.50E+01 2.69E+01 1.07E-01
(65,180) 2.12E+02 5.33E+03 3.45E+02 3.43E+01 2.05E+01 1.44E-01
(65,0) 2.12E+02 5.29E+03 3.45E+02 3.43E+01 2.05E+01 1.44E-01

(50,160) 2.07E+02 5.20E+03 2.38E+02 6.20E+01 2.17E+01 1.40E-01
(50,20) 2.07E+02 5.14E+03 2.38E+02 6.20E+01 2.17E+01 1.40E-01

Table 10: Objective function values for each solution of Rod model.

VE SA SE BT RA SQ

(0,180) 2.49E+01 6.22E+02 3.83E+03 5.00E+01 2.48E+01 4.24E-02
(0,0) 2.49E+01 6.22E+02 3.83E+03 5.00E+01 2.48E+01 4.24E-02

(90,30) 6.09E+01 1.52E+03 1.22E+03 4.67E+01 2.89E+01 1.03E-01
(30,150) 6.09E+01 1.52E+03 1.22E+03 5.22E+01 2.89E+01 1.03E-01
(30,30) 6.09E+01 1.52E+03 1.22E+03 4.67E+01 2.89E+01 1.03E-01

(180,150) 6.09E+01 1.52E+03 1.22E+03 4.67E+01 2.89E+01 1.03E-01
(100,150) 6.09E+01 1.52E+03 1.22E+03 4.67E+01 2.89E+01 1.03E-01
(90,130) 7.62E+01 1.90E+03 1.45E+03 5.29E+01 2.44E+01 1.30E-01
(30,50) 7.62E+01 1.90E+03 1.45E+03 5.20E+01 2.44E+01 1.30E-01
(180,50) 7.62E+01 1.90E+03 1.45E+03 6.57E+01 2.44E+01 1.30E-01

Analysing Table 9, the Lego Curved model obtained two build orientations
((90, 90) and (0, 90)) that optimize three objective functions (V E, SA and
SQ). The solution that optimizes more objective functions at the same time
was (0, 180), for Rod model (see Table 10).

5 Simulation and discussion of computational results

The previous section proposed a large set of optimal build orientations. To
select the best build orientation, the relative error associated with each solution
θ∗j is defined by

rj =
∑
k

|fkj −min(fkj )|
|min(fkj )|

where fkj represents the objective function value on the solution θ∗j for each

k = {V E, SA, SE,BT,RA, SQ} and min(fkj ) represents the minimum value
considering all identified θ∗j build orientations for the k objective function,
identified on Tables 5-10. Table 11 presents the selected optimal build orien-
tations with minimum relative error (min(rj)), for all models.

To analyse the importance of build orientation in the presented models,
simulation procedures were done. Table 12 presents the time required to print
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Table 11: Selected optimal orientations for all models.

Models Selected optimal orientations

Dryer (0, 0); (180, 0)
Excavator Head (90, 30); (175, 180); (175, 0); (135, 140); (135, 40)

Fin (0, 0)
Keychain (135, 180); (45, 90)

Lego Curved (90, 90); (0, 90)
Rod (0, 180); (0, 0); (90, 30); (30, 150); (30, 30); (180, 150); (100, 150)

each model (TP), in minutes, and the amount of filament material spent (FL),
in millimetres, for each solution presented in Tables 5–10.

Table 12: Printing time and filament length values for each solution for Dryer,
Excavator Head, Fin, Keychain, Lego Curved and Rod models.

Dryer Excavator Head Fin

θ∗ TP FL θ∗ TP FL θ∗ TP FL

(0,0) 415 31441.6 (55,0) 70 3957.1 (0,0) 84 6920.5
(180,0) 706 60218.7 (55,180) 77 5744.1 (180,0) 119 11559.0
(0,25) 541 42554.2 (90,30) 72 3534.1 (0,60) 138 7221.3
(0,155) 907 79013.4 (90,150) 72 3360.5 (90,0) 85 8446.8
(90,180) 1222 115026.1 (175,180) 40 3355.0 (120,180) 119 11526.6

(175,0) 49 4326.8 (55,0) 117 11270.9
(135,140) 53 3450.5 (90,90) 145 7064.2
(135,40) 55 4183.1

Keychain Lego Curved Rod

θ∗ TP FL θ∗ TP FL θ∗ TP FL

(135,180) 138 6723.5 (90,90) 80 6341.4 (0,180) 63 4186.2
(140,170) 140 7739.2 (0,90) 75 5766.3 (0,0) 63 4187.0
(45,90) 121 11645.2 (135,180) 122 4638.7 (90,30) 58 3467.6

(135,0) 122 4676.2 (30,150) 61 3649.3
(65,180) 118 10412.4 (30,30) 58 3591.8
(65,0) 205 19295.0 (180,150) 58 3421.0

(50,160) 203 17858.4 (100,150) 58 3451.4
(50,20) 314 29689.8 (90,130) 116 10842.1

(30,50) 115 10735.3
(180,50) 121 10840.4

In fact, with this simulation, it is confirmed that the selected optimal build
orientation angles identified in Table 11 are those that require shorter printing
time and spend less amount of filament material, as can be seen in Table 12.
Examples of the selected build orientations are illustrated in Fig. 6.
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(a)(b)(c)

(d) (e) (f)

Fig. 6: Optimal solution examples for all models.

6 Conclusions and future work

In this paper, a practical study of six objective functions (volumetric error,
support area, staircase effect, build time, surface roughness and surface qual-
ity) was presented for six 3D CAD models. In order to obtain optimal build
orientations for 3D printing models the Electromagnetism-like optimization
method was used.

Computational experiments showed the effectiveness of the proposed ap-
proach, identifying the set of optimal solutions for all models. The simulation
results allow us to conclude that the selected optimal build orientation angles
for 3D printing achieved less printing time and filament material.

This study also indicates that some of the presented objective functions
have conflicting objectives which can lead, in the future, to a multi-objective
optimization approach, optimizing two or more objective functions.
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