160 research outputs found

    An Innovative Photovoltaic Luminescent Solar Concentrator Window: Energy and Environmental Aspects

    Get PDF
    Over the years, different types of smart windows have been tested and developed. In this study, an innovative prototype of a photovoltaic smart window, that integrates luminescent solar concentrators, was analysed. The device independently regulates the movement of the shading system and allows energy surplus, through the electricity generated by modules. Considering the peculiar structure (characterized by the presence of a light shelf) and the thermal characteristics of the device, the analyses focused on optical, thermal, and electrical performances, comparing them with those of a traditional window. The analysis followed an experimental approach that involved lighting and electrical monitoring studies in a real test room, to create validated models for conducting simulations in larger buildings. The results were expressed through the study of illuminance maps, electricity generation obtainable from the integrated photovoltaic technology and in terms of energy savings. Energy generation accounts for around 10 Wh/month, with up to 50% improvement from the perspective of energy use for heating and cooling. The technology proves effective in allowing efficient overall energy performances while generating enough energy to operate the smart window control systems

    Life Cycle Assessment of Luminescent Solar Concentrators Integrated into a Smart Window

    Get PDF
    The main goal of this paper is to assess the life cycle environmental impacts of a multifunctional smart window luminescent solar concentrator (SW-LSC) prototype through the application of the Life Cycle Assessment methodology. To the authors' knowledge, this is one of the first studies on the topic. The analysis followed a cradle to gate approach, considering the assembly and maintenance phase as well as the end of life, examined separately through a recycling/landfill scenario. A comparison of the impacts of LSC modules with those of some building-integrated photovoltaic technologies was carried out. Results showed that the global warming potential (100 years) for SW-LSC was 5.91 x 10(3) kg CO2eq and the manufacturing phase had the greatest impact (about 96%). The recycling/landfill scenario results showed the possibility to reduce impacts by an average of 45%. A dominance analysis of SW-LSC components showed that the aluminum frame was the main hotspot (about 60% contribution), followed by the light-shelf (about 19%). Batteries and motors for the shading system were the biggest contributors in the abiotic depletion potential category (36% and 30%, respectively). An alternative scenario, which involved the use of 75% recycled aluminum for the window frame, highlighted the possibility to reduce environmental impacts from 3% to 46%. Finally, the comparison results showed that the LSC modules' impacts were on average 870% lower than that of various PV technologies when compared on the basis of m(2); on the contrary, LSC modules had the highest impacts in all categories (from 200% to 1900%) when compared with other PV technologies on the basis of 1 kWh of energy generated. The results could be used for the definition of eco-design strategies for the examined device, in order to support the scaling-up process and to put "greener" systems onto the market

    Effect of Support Supervision on Maternal and Newborn Health Services and Practices in Rural Eastern Uganda

    Get PDF
    Background: Support supervision is one of the strategies used to check the quality of services provided at health facilities. From 2013 to 2015, Makerere University School of Public Health strengthened support supervision in the district of Kibuku, Kamuli and Pallisa in Eastern Uganda to improve the quality of maternal and newborn services. Objective: This article assesses quality improvements in maternal and newborn care services and practices during this period. Methods: District management teams were trained for two days on how to conduct the supportive supervision. Teams were then allocated particular facilities, which they consistently visited every quarter. During each visit, teams scored the performance of each facility based on checklists; feedback and corrective actions were implemented. Support supervision focused on maternal health services, newborn care services, human resources, laboratory services, availability of Information, education and communication materials and infrastructure. Support supervision reports and checklists from a total of 28 health facilities, each with at least three support supervision visits, were analyzed for this study and 20 key-informant interviews conducted. Results: There was noticeable improvement in maternal and newborn services. For instance, across the first, second and third quarters, availability of parenteral oxytocin increased from 57% to 75% and then to 82%. Removal of retained products increased from 14% to 50% to 54%, respectively. There was perceived improvement in the use of standards and guidelines for emergency obstetric care and quality of care provided. Qualitatively, three themes were identified that promote the success of supportive supervision: changes in the support supervision style, changes in the adherence to clinical standards and guidelines, and multi-stakeholder engagement. Conclusion: Support supervision helped district health managers to identify and address maternal and newborn service-delivery gaps. However, issues beyond the jurisdiction of district health managers and facility managers may require additional interventions beyond supportive supervision.DFI

    Chromatin-based, in cis and in trans regulatory rewiring underpins distinct oncogenic transcriptomes in multiple myeloma

    Get PDF
    Multiple myeloma is a genetically heterogeneous cancer of the bone marrow plasma cells (PC). Distinct myeloma transcriptome profiles are primarily driven by myeloma initiating events (MIE) and converge into a mutually exclusive overexpression of the CCND1 and CCND2 oncogenes. Here, with reference to their normal counterparts, we find that myeloma PC enhanced chromatin accessibility combined with paired transcriptome profiling can classify MIE-defined genetic subgroups. Across and within different MM genetic subgroups, we ascribe regulation of genes and pathways critical for myeloma biology to unique or shared, developmentally activated or de novo formed candidate enhancers. Such enhancers co-opt recruitment of existing transcription factors, which although not transcriptionally deregulated per se, organise aberrant gene regulatory networks that help identify myeloma cell dependencies with prognostic impact. Finally, we identify and validate the critical super-enhancer that regulates ectopic expression of CCND2 in a subset of patients with MM and in chronic lymphocytic leukemia

    Household welfare impacts of an agricultural innovation platform in Uganda

    Get PDF
    Open Access Journal; Published online: 08 Jul 2020Technical approaches to food production are important to the food security of growing populations in developing countries. However, strategic investments in research and farm‐level adoption require greater coherence in agricultural, societal, and local policies. The Agricultural Innovation System (AIS) and formation of the Cassava Innovation Platform (CIP) in Uganda were designed to stimulate interactions between researchers and farmers, leading to the development of improved cassava varieties through participatory plant breeding (PPB) and participatory variety selection (PVS). Moreover, the establishment of a community‐based commercialized seed system called Cassava Seed Entrepreneurship (CSE) has made an important contribution to the rapid multiplication and dissemination of clean planting materials in Uganda. The impact of CIP participation on rural household welfare was measured by household consumption expenditure per capita. The Endogenous Switching Regression (ESR) model was applied to data from a formal household survey conducted in the eastern, northern, and mid‐western regions of Uganda. The education, farm size, livestock size, access to credit, cost of cassava planting materials, access to extension service, access to training, and social group membership are significantly associated with CIP participation. CIP participation resulted in a 47.4% increase in household consumption expenditure. This important evidence highlights the need to promote agricultural innovation platform for improving rural livelihoods. Moreover, CIP participation has impact heterogeneity within the participant group that is conditional on household characteristics such as the gender of the household head, pointing to the need to tailor specific interventions and target specific groups within farm households

    A proteomic approach for the identification of novel lysine methyltransferase substrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signaling via protein lysine methylation has been proposed to play a central role in the regulation of many physiologic and pathologic programs. In contrast to other post-translational modifications such as phosphorylation, proteome-wide approaches to investigate lysine methylation networks do not exist.</p> <p>Results</p> <p>In the current study, we used the ProtoArray<sup>® </sup>platform, containing over 9,500 human proteins, and developed and optimized a system for proteome-wide identification of novel methylation events catalyzed by the protein lysine methyltransferase (PKMT) SETD6. This enzyme had previously been shown to methylate the transcription factor RelA, but it was not known whether SETD6 had other substrates. By using two independent detection approaches, we identified novel candidate substrates for SETD6, and verified that all targets tested <it>in vitro </it>and in cells were genuine substrates.</p> <p>Conclusions</p> <p>We describe a novel proteome-wide methodology for the identification of new PKMT substrates. This technological advance may lead to a better understanding of the enzymatic activity and substrate specificity of the large number (more than 50) PKMTs present in the human proteome, most of which are uncharacterized.</p

    Epigenome Microarray Platform for Proteome-Wide Dissection of Chromatin-Signaling Networks

    Get PDF
    Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin

    Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    Get PDF
    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀  =  ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging

    The Italian arm of the PREPARE study: an international project to evaluate and license a maternal vaccine against group B streptococcus.

    Get PDF
    BACKGROUND: Group B streptococcus (GBS) is a leading cause of sepsis, pneumonia and meningitis in infants, with long term neurodevelopmental sequelae. GBS may be associated with poor pregnancy outcomes, including spontaneous abortion, stillbirth and preterm birth. Intrapartum antibiotic prophylaxis (IAP) is currently the only way to prevent early-onset disease (presenting at 0 to 6 days of life), although it has no impact on the disease presenting over 6 days of life and its implementation is challenging in resource poor countries. A maternal vaccine against GBS could reduce all GBS manifestations as well as improve pregnancy outcomes, even in low-income countries. MAIN BODY: The term "PREPARE" designates an international project aimed at developing a maternal vaccination platform to test vaccines against neonatal GBS infections by maternal immunization. It is a non-profit, multi-center, interventional and experimental study (promoted by the St George University of London. [UK]) with the aim of developing a maternal vaccination platform, determining pregnancy outcomes, and defining the extent of GBS infections in children and mothers in Africa. PREPARE also aims to estimate the protective serocorrelates against the main GBS serotypes that cause diseases in Europe and Africa and to conduct two trials on candidate GBS vaccines. PREPARE consists of 6 work packages. In four European countries (Italy, UK, Netherlands, France) the recruitment of cases and controls will start in 2020 and will end in 2022. The Italian PREPARE network includes 41 centers. The Italian network aims to collect: GBS isolates from infants with invasive disease, maternal and neonatal sera (cases); cord sera and GBS strains from colonized mothers whose infants do not develop GBS infection (controls). SHORT CONCLUSION: PREPARE will contribute information on protective serocorrelates against the main GBS serotypes that cause diseases in Europe and Africa. The vaccine that will be tested by the PREPARE study could be an effective strategy to prevent GBS disease
    corecore