228 research outputs found

    Chemomechanical coupling and motor cycles of the molecular motor myosin V

    Get PDF

    Kinetics and mechanism of the formation of water cluster ions from O2(plus) and H2O in He, Ar, N2, and O2 at 296 K

    Get PDF
    The reaction sequence leading from O2(+) to H3O(+)-H2O was examined in He, Ar, N2 and O2 carrier gases in a flowing afterglow system. The rate constants for the reactions were measured and the kinetic analysis for their determination is presented. For M = N2, two new steps involving the formation and reaction of O2(+)-N2 were proposed and examined. The rate constants are discussed and compared with other experimental values

    Modifications of Hyaluronan Influence the Interaction with Human Bone Morphogenetic Protein-4 (hBMP-4).

    Get PDF
    n this study, we have demonstrated that the modification of hyaluronan (hyaluronic acid; Hya) with sulfate groups led to different binding affinities for recombinant human bone morphogenetic protein-4 (rhBMP-4). The high-sulfated sHya2.8 (average degree of sulfation (D.S.) 2.8) exhibited the tightest interaction with rhBMP-4, followed by the low-sulfated sHya1.0, as determined with surface plasmon resonance (SPR), ELISA, and competition ELISA. Unmodified Hya, chondroitin-sulfate (CS), and heparan sulfate (HS) showed significantly less binding affinity. SPR data could be fitted to an A + B = AB Langmuir model and binding constants were evaluated ranging from 13 pM to 5.45 microM. The interaction characteristics of the differentially sulfated Hyas are promising for the incorporation of these modified polysaccharides in bioengineered coatings of biomaterials for medical applications

    Divergent architecture of the heterotrimeric NatC complex explains N-terminal acetylation of cognate substrates

    Get PDF
    The heterotrimeric NatC complex, comprising the catalytic Naa30 and the two auxiliary subunits Naa35 and Naa38, co-translationally acetylates the N-termini of numerous eukaryotic target proteins. Despite its unique subunit composition, its essential role for many aspects of cellular function and its suggested involvement in disease, structure and mechanism of NatC have remained unknown. Here, we present the crystal structure of the Saccharomyces cerevisiae NatC complex, which exhibits a strikingly different architecture compared to previously described N-terminal acetyltransferase (NAT) complexes. Cofactor and ligand-bound structures reveal how the first four amino acids of cognate substrates are recognized at the Naa30–Naa35 interface. A sequence-specific, ligand-induced conformational change in Naa30 enables efficient acetylation. Based on detailed structure–function studies, we suggest a catalytic mechanism and identify a ribosome-binding patch in an elongated tip region of NatC. Our study reveals how NAT machineries have divergently evolved to N-terminally acetylate specific subsets of target proteins

    Theory of Magneto--Acoustic Transport in Modulated Quantum Hall Systems Near ν=1/2\nu=1/2

    Full text link
    Motivated by the experimental results of Willett et al [Phys.Rev. Lett., {\bf 78}, 4478 (1997)] we develop a magneto-transport theory for the response of a two dimensional electron gas (2DEG) in the Fractional Quantum Hall Regime near Landau level filling factor ν=1/2\nu = 1/2 to the surface acoustic wave (SAW) in the presence of an added periodic density modulation. We assume there exists a Composite Fermion Fermi Surface (CF-FS) at ν=1/2\nu = 1/2, and we show that the deformation of the (CF-FS) due to the density modulation can be at the origin of the observed transport anomalies for the experimental conditions. Our analysis is carried out particularly for the non-local case which corresponds to the SAW experiments. We introduce a new model of a deformed CF-FS. The model permits us to explain anomalous features of the response of the modulated 2DEG to the SAW near ν=1/2:\nu = 1/2: namely the nonlinear wave vector dependence of the electron conductivity, the appearance of peaks in the SAW velocity shift and attenuation and the anisotropy of the effect, all of which originate from contributions to the conductivity tensor due to the regions of the CF-FS which are flattened by the applied modulation.Comment: 13 pages, 4 figures, the published versio

    A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity

    Get PDF
    Many Gram-positive bacteria produce lipoteichoic acid (LTA) polymers whose physiological roles have remained a matter of debate because of the lack of LTA-deficient mutants. The ypfP gene responsible for biosynthesis of a glycolipid found in LTA was deleted in Staphylococcus aureus SA113, causing 87% reduction of the LTA content. Mass spectrometry and nuclear magnetic resonance spectroscopy revealed that the mutant LTA contained a diacylglycerol anchor instead of the glycolipid, whereas the remaining part was similar to the wild-type polymer except that it was shorter. The LTA mutant strain revealed no major changes in patterns of cell wall proteins or autolytic enzymes compared with the parental strain indicating that LTA may be less important in S. aureus protein attachment than previously thought. However, the autolytic activity of the mutant was strongly reduced demonstrating a role of LTA in controlling autolysin activity. Moreover, the hydrophobicity of the LTA mutant was altered and its ability to form biofilms on plastic was completely abrogated indicating a profound impact of LTA on physicochemical properties of bacterial surfaces. We propose to consider LTA and its biosynthetic enzymes as targets for new antibiofilm strategies

    Evidence for recombinant GRP78, CALR, PDIA3 and GPI as mediators of genetic instability in human CD34+ cells

    Get PDF
    Soluble factors released from irradiated human mesenchymal stromal cells (MSC) may induce genetic instability in human CD34+ cells, potentially mediating hematologic disorders. Recently, we identified four key proteins in the secretome of X-ray-irradiated MSC, among them three endoplasmic reticulum proteins, the 78 kDa glucose-related protein (GRP78), calreticulin (CALR), and protein disulfide-isomerase A3 (PDIA3), as well as the glycolytic enzyme glucose-6-phosphate isomerase (GPI). Here, we demonstrate that exposition of CD34+ cells to recombinant GRP78, CALR, PDIA3 and GPI induces substantial genetic instability. Increased numbers of γH2AX foci (p < 0.0001), centrosome anomalies (p = 0.1000) and aberrant metaphases (p = 0.0022) were detected in CD34+ cells upon incubation with these factors. Specifically, γH2AX foci were found to be induced 4–5-fold in response to any individual of the four factors, and centrosome anomalies by 3–4 fold compared to control medium, which contained none of the recombinant proteins. Aberrant metaphases, not seen in the context of control medium, were detected to a similar extent than centrosome anomalies across the four factors. Notably, the strongest effects were observed when all four factors were collectively provided. In summary, our data suggest that specific components of the secretome from irradiated MSC act as mediators of genetic instability in CD34+ cells, thereby possibly contributing to the pathogenesis of radiation-induced hematologic disorders beyond direct radiation-evoked DNA strand breaks
    corecore