220 research outputs found

    Antibacterial mono- and sesquiterpene esters of benzoic acids from Iranian propolis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Propolis (bee glue) has been used as a remedy since ancient times. Propolis from unexplored regions attracts the attention of scientists in the search for new bioactive molecules.</p> <p>Results</p> <p>From Iranian propolis from the Isfahan province, five individual components were isolated: the prenylated coumarin suberosin <b>1</b>, and four terpene esters: tschimgin (bornyl <it>p</it>-hydroxybenzoate) <b>2</b>, tschimganin (bornyl vanillate) <b>3</b>, ferutinin (ferutinol <it>p</it>-hydroxybenzoate) <b>4, </b>and tefernin (ferutinol vanillate) <b>5</b>. All of them were found for the first time in propolis. Compounds <b>2 </b>- <b>5 </b>demonstrated activity against <it>Staphylococcus aureus</it>.</p> <p>Conclusions</p> <p>The results of the present study are consistent with the idea that propolis from unexplored regions is a promising source of biologically active compounds.</p

    Analytical methods applied to diverse types of Brazilian propolis

    Get PDF
    Propolis is a bee product, composed mainly of plant resins and beeswax, therefore its chemical composition varies due to the geographic and plant origins of these resins, as well as the species of bee. Brazil is an important supplier of propolis on the world market and, although green colored propolis from the southeast is the most known and studied, several other types of propolis from Apis mellifera and native stingless bees (also called cerumen) can be found. Propolis is usually consumed as an extract, so the type of solvent and extractive procedures employed further affect its composition. Methods used for the extraction; analysis the percentage of resins, wax and insoluble material in crude propolis; determination of phenolic, flavonoid, amino acid and heavy metal contents are reviewed herein. Different chromatographic methods applied to the separation, identification and quantification of Brazilian propolis components and their relative strengths are discussed; as well as direct insertion mass spectrometry fingerprinting

    Antiproliferative effects of Tubi-bee propolis in glioblastoma cell lines

    Get PDF
    Propolis is a resin formed by a complex chemical composition of substances that bees collect from plants. Since ancient times, propolis has been used in folk medicine, due to its biological properties, that include antimicrobial, anti-inflammatory, antitumoral and immunomodulatory activities. Glioblastoma is the most common human brain tumor. Despite the improvements in GBM standard treatment, patients’ prognosis is still very poor. The aim of this work was to evaluate in vitro the Tubi-bee propolis effects on human glioblastoma (U251 and U343) and fibroblast (MRC-5) cell lines. Proliferation, clonogenic capacity and apoptosis were analyzed after treatment with 1 mg/mL and 2 mg/mL propolis concentrations for different time periods. Additionally, glioblastoma cell lines were submitted to treatment with propolis combined with temozolomide (TMZ). Data showed an antiproliferative effect of tubi-bee propolis against glioblastoma and fibroblast cell lines. Combination of propolis with TMZ had a synergic anti-proliferative effect. Moreover, propolis caused decrease in colony formation in glioblastoma cell lines. Propolis treatment had no effects on apoptosis, demonstrating a cytostatic action. Further investigations are needed to elucidate the molecular mechanism of the antitumor effect of propolis, and the study of its individual components may reveal specific molecules with antiproliferative capacity

    fpocket: online tools for protein ensemble pocket detection and tracking

    Get PDF
    Computational small-molecule binding site detection has several important applications in the biomedical field. Notable interests are the identification of cavities for structure-based drug discovery or functional annotation of structures. fpocket is a small-molecule pocket detection program, relying on the geometric α-sphere theory. The fpocket web server allows: (i) candidate pocket detection—fpocket; (ii) pocket tracking during molecular dynamics, in order to provide insights into pocket dynamics—mdpocket; and (iii) a transposition of mdpocket to the combined analysis of homologous structures—hpocket. These complementary online tools allow to tackle various questions related to the identification and annotation of functional and allosteric sites, transient pockets and pocket preservation within evolution of structural families. The server and documentation are freely available at http://bioserv.rpbs.univ-paris-diderot.fr/fpocket

    Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro

    Get PDF
    Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. METHODS: Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. RESULTS: All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. CONCLUSION: Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.We thank the Portuguese Science and Technology Foundation (FCT) for VMG fellowship (ref. SFRH/BI/33503/2008). The authors thank Mr. Antonio Marques from Frutercoop - Azores, who kindly collected and provided the propolis sample for the study

    Bioassay guided purification of the antimicrobial fraction of a Brazilian propolis from Bahia state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good <it>in vitro </it>and <it>in vivo </it>antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6.</p> <p>Methods</p> <p>Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against <it>Staphyloccus aureus </it>ATCC 25923 and <it>Streptococcus mutans </it>Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).</p> <p>Results</p> <p>EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity.</p> <p>Conclusion</p> <p>a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.</p

    The chemical characterization of Nigerian propolis samples and their activity against Trypanosoma brucei.

    Get PDF
    Profiling of extracts from twelve propolis samples collected from eight regions in Nigeria was carried out using high performance liquid chromatography (LC) coupled with evaporative light scattering (ELSD), ultraviolet detection (UV) and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). Principal component analysis (PCA) of the processed LC-MS data demonstrated the varying chemical composition of the samples. Most of the samples were active against Trypanosoma b.brucei with the highest activity being in the samples from Southern Nigeria. The more active samples were fractionated in order to isolate the component(s) responsible for their activity using medium pressure liquid chromatography (MPLC). Three xanthones, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl)xanthone a previously undescribed xanthone and three triterpenes: ambonic acid, mangiferonic acid and a mixture of α-amyrin with mangiferonic acid (1:3) were isolated and characterised by NMR and LC-MS. These compounds all displayed strong inhibitory activity against T.b.brucei but none of them had higher activity than the crude extracts. Partial least squares (PLS) modelling of the anti-trypanosomal activity of the sample extracts using the LC-MS data indicated that high activity in the extracts, as judged from LCMS 2data, could be correlated to denticulatain isomers in the extracts

    Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, <it>Apis mellifera</it>, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs).</p> <p>Methods</p> <p>In an <it>in vitro </it>tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of <it>in vitro </it>angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE.</p> <p>Results</p> <p>RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced <it>in vitro </it>tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation.</p> <p>Conclusion</p> <p>Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.</p

    European propolis is highly active against trypanosomatids including Crithidia fasciculata.

    Get PDF
    Extracts of 35 samples of European propolis were tested against wild type and resistant strains of the protozoal pathogens Trypanosoma brucei, Trypanosoma congolense and Leishmania mexicana. The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellificae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida. High levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against L. mexicana. The propolis samples were profiled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data obtained indicated there was a wide variation in the composition of the propolis samples. Orthogonal partial least squares (OPLS) associated a butyrate ester of pinobanksin with high activity against T. brucei whereas in the case of T. congolense high activity was associated with methyl ethers of chrysin and pinobanksin. In the case of C. fasciculata highest activity was associated with methyl ethers of galangin and pinobanksin. OPLS modelling of the activities against L. mexicana using the mass spectrometry produced a less successful model suggesting a wider range of active components
    corecore