405 research outputs found

    How many of the scaling trends in pppp collisions will be violated at sqrt{s_NN} = 14 TeV ? - Predictions from Monte Carlo quark-gluon string model

    Full text link
    Multiplicity, rapidity and transverse momentum distributions of hadrons produced both in inelastic and nondiffractive pppp collisions at energies from s=200\sqrt{s} = 200\,GeV to 14\,TeV are studied within the Monte Carlo quark-gluon string model (QGSM). Good agreement with the available experimental data up to s=13\sqrt{s} = 13\,TeV is obtained, and predictions are made for the collisions at top LHC energy s=14\sqrt{s} = 14\,TeV. The model indicates that Feynman scaling and extended longitudinal scaling remain valid in the fragmentation regions, whereas strong violation of Feynman scaling is observed at midrapidity. The Koba-Nielsen-Olesen (KNO) scaling in multiplicity distributions is violated at LHC also. The origin of both maintenance and violation of the scaling trends is traced to short range correlations of particles in the strings and interplay between the multistring processes at ultrarelativistic energies

    Synchonisation of Resonances with Thresholds

    Full text link
    The mechanism by which a resonance may be attracted to a sharp threshold is described with several examples. It involves a threshold cusp interfering constructively with either or both (i) a resonance produced via confinement, (ii) attractive t- and u-channel exchanges. More generally, it is suggested that resonances are eigenstates generated by mixing between confined states and long-range meson and baryon exchanges.Comment: 8 pages, 4 figures. For Meson08 Proceedings. One important typo correcte

    Light-Front Analysis of pi^{-} Mesons Produced in Mg - Mg Collisions at 4.3 a Gev/c

    Get PDF
    Light-front analysis of pi^{-} mesons in Mg-Mg collisions is carried out. The phase space of secondary pions is naturally divided into two parts in one of which the thermal equilibration assumption seems to be in a good agreement with data. Corresponding temperatures are extracted and compared to the results of other experiments. The experimental results have been compared with the predictions of the Quark Gluon String Model (QGSM) and satisfactory agreement between the experimental data and the model has been found.Comment: 14 pages with 7 postscript figures. accepted for publication in Nucl. Phys.

    Cross-sections for nuclide production in 56Fe target irradiated by 300, 500,750, 1000, 1500, and 2600 MeV protons compared with data on hydrogen target irradiation by 300, 500, 750, 1000, and 1500 MeV/nucleon 56Fe ions

    Full text link
    Cross-sections for radioactive nuclide production in 56Fe(p,x) reactions at 300, 500, 750, 1000, 1500, and 2600 MeV were measured using the ITEP U-10 proton accelerator. In total, 221 independent and cumulative yields of products of half-lives from 6.6 min to 312 days have been obtained via the direct-spectrometry method. The measured data have been compared with the experimental data obtained elsewhere by the direct and inverse kinematics methods and with calculations by 15 codes, namely: MCNPX (INCL, CEM2k, BERTINI, ISABEL), LAHET (BERTINI, ISABEL), CEM03 (.01, .G1, .S1), LAQGSM03 (.01, .G1, >.S1), CASCADE-2004, LAHETO, and BRIEFF. Most of our data are in a good agreement with the inverse kinematics results and disprove the results of some earlier activation measurements that were quite different from the inverse kinematics measurements. The most significant calculation-to-experiment differences are observed in the yields of the A<30 light nuclei, indicating that further improvements in nuclear reaction models are needed, and pointing out as well to a necessity of more complete measurements of such reactions.Comment: 53 pages, 9 figures, 6 tables, only pdf file, submitted to Phys. Rev.

    Anisotropic flow of charged and identified hadrons in the quark-gluon string model for Au+Au collisions at sqrt(s) = 200 GeV

    Full text link
    The pseudorapidity behaviour of the azimuthal anisotropy parameters v_1 and v_2 of inclusive charged hadrons and their dependence on the centrality has been studied in Au+Au collisions at full RHIC energy of sqrt(s) = 200 GeV within the microscopic quark-gluon string model. The QGSM simulation results for the directed flow v_1 show antiflow alignment within the pseudorapidity range |eta| < 2 in a fair agreement with the experimental v_1(eta) data, but cannot reproduce the further development of the antiflow up to |eta| around 3.5. The eta dependence of the elliptic flow v_2 extracted from the simulations agrees well with the experimental data in the whole pseudorapidity range for different centrality classes. The centrality dependence of the integrated elliptic flow of charged hadrons in the QGSM almost coincides with the PHOBOS experimental distribution. The transverse momentum dependence of the elliptic flow of identified and inclusive charged hadrons is studied also. The model reproduces quantitatively the low p_T part of the distributions rather good, but underestimates the measured elliptic flow for transverse momenta p_T > 1 GeV/c. Qualitatively, however, the model is able to reproduce the saturation of the v_2(p_T) spectra with rising p_T as well as the crossing of the elliptic flow for mesons and baryons.Comment: REVTeX, 10 pages, 10 figures, v2: extended discussion of the model results, accepted for publication in Phys. Rev.

    Microscopic study of freeze-out in relativistic heavy ion collisions at SPS energies

    Full text link
    The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/cc are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission takes place from the whole space-time domain available for the system evolution, but not from the thin ''freeze-out hypersurface", adopted in fluid dynamical models. Pions are continuously emitted from the whole volume of the reaction and reflect the main trends of the system evolution. Nucleons in Pb+Pb collisions initially come from the surface region. For both systems there is a separation of the elastic and inelastic freeze-out. The mesons with large transverse momenta, ptp_t, are predominantly produced at the early stages of the reaction. The low ptp_t-component is populated by mesons coming mainly from the decay of resonances. This explains naturally the decreasing source sizes with increasing ptp_t, observed in HBT interferometry. Comparison with S+S and Au+Au systems at 11.6 AGeV/cc is also presented.Comment: REVTEX, 26 pages incl. 9 figures and 2 tables, to be published in the Physical Review

    The initial state of ultra-relativistic heavy ion collision

    Get PDF
    A model for energy, pressure and flow velocity distributions at the beginning of ultra-relativistic heavy ion collisions is presented, which can be used as an initial condition for hydrodynamic calculations. Our model takes into account baryon recoil for both target and projectile, arising from the acceleration of partons in an effective field, produced in the collision. The typical field strength (string tension) for RHIC energies is about 5-12 GeV/fm, what allows us to talk about "string ropes". The results show that a QGP forms a tilted disk, such that the direction of the largest pressure gradient stays in the reaction plane, but deviates from both the beam and the usual transverse flow directions. Such initial conditions may lead to the creation of "antiflow" or "third flow component".Comment: 28 pages, 9 figures. The presentation has been changed considerably. Some parts of the model have been reformulated, what led to modifications in several equations: (20-38), Apps. A, B. All the figures have been changed from 100 GeV/nucl initial energy to the achieved RHIC energy of 65 GeV/nucl. The last subplots in the Figs. 3, 4, 5, 6 present E=T^{00} in the laboratory frame now, instead of the energy density in the local rest frame, e, shown in the initial version. We also added the App. C to clarify the transformation from space-time to lightcone coordinates and bac

    Lu-Hf Chronology in Chondrites and the Role of Phosphates.

    Get PDF
    第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講

    Study of ππ\pi\pi correlations at LHC and RHIC energies in pppp collisions within the quark-gluon string model

    Full text link
    The Quark Gluon String Model (QGSM) reproduces well the global characteristics of the pppp collisions at RHIC and LHC, e.g., the pseudorapidity and transverse momenta distributions at different centralities. The main goal of this work is to employ the Monte Carlo QGSM for description of femtoscopic characteristics in pppp collisions at RHIC and LHC. The study is concentrated on the low multiplicity and multiplicity averaged events, where no collective effects are expected. The different procedures for fitting the one-dimensional correlation functions of pions are studied and compared with the space-time distributions extracted directly from the model. Particularly, it is shown that the double Gaussian fit reveals the contributions coming separately from resonances and from directly produced particles. The comparison of model results with the experimental data favors decrease of particle formation time with rising collision energy.Comment: 9 pages, 14 figures, 2 table
    corecore