36,971 research outputs found
Structure and three-body decay of Be resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be resonances into one neutron and two
-particles. We investigate the six resonances above the break-up
threshold and below 6 MeV: , and . The
short-distance properties of each resonance are studied, and the different
angular momentum and parity configurations of the Be and He two-body
substructures are determined. We compute the branching ratio for sequential
decay via the Be ground state which qualitatively is consistent with
measurements. We extract the momentum distributions after decay directly into
the three-body continuum from the large-distance asymptotic structures. The
kinematically complete results are presented as Dalitz plots as well as
projections on given neutron and -energy. The distributions are
discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review
Momentum distributions from three-body decaying 9Be and 9B resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be and B resonances into , and
or . We consider six low-lying resonances of Be (,
and ) and one resonance of B () to compare with. The
properties of the resonances at large distances are decisive for the momentum
distributions of the three decaying fragments. Systematic detailed energy
correlations of Dalitz plots are presented.Comment: 4 pages, 2 figures. Proceedings of the SOTANCP2 conference held in
Brussels in May 201
On the eta-invariant in the four dimensional chiral U(1) theory
The imaginary part of the effective action is investigated in the 4D chiral
U(1) theory using the CFA.Comment: LATTICE99(Chiral Gauge Theories), typo fixe
Possible world-wide middle miocene iridium anomaly and its relationship to periodicity of impacts and extinctions
In a study of one million years of Middle Miocene sediment deposition in ODP Hole 689B in the Weddell Sea near Antarctica, a single iridium (Ir) anomaly of 44 (+ or - 10) x 10 to the 12th gram Ir per gram rock (ppt) was observed in core 6H, section 3, 50 to 60 cm, after background contributions associated with manganese precipitates and clay are subtracted. The ODP Hole 689B is 10,000 km away from another site, DSDP Hole 588B in the Tasman Sea north of New Zealand, where a single Ir anomaly of 144 + or - 7 ppt over a background of 11 ppt was found in an earlier study of 3 million years of deposition. From chemical measurements the latter deposition was thought to be impact-related. Ir measurements were made, following neutron activation, with the Iridium Coincidence Spectrometer. The age vs depth calibration curves given in the DSDP and ODP preliminary reports indicate the ages of the Iranomalies are identical, 11.7 million years, but the absolute and relative uncertainties in the curves are not known. Based on the newest age data the age estimate is 10 million years. As the Ir was deposited at the two sites at about the same time and they are one quarter of the way around the world from each other it seems likely that the deposition was world-wide. The impact of a large asteroid or comet could produce the wide distribution, and this data is supportive of the impact relationship deduced for Deep Sea Drilling Project (DSDP) 588B from the chemical evidence. If the surface densities of Ir at the two sites are representative of the world-wide average, the diameter of a Cl type asteroid containing the necessary Ir would be 3 + or - 1 km, which is large enough to cause world-wide darkness and hence extinctions although the latter point is disputed
Asymmetric Heat Flow in Mesoscopic Magnetic System
The characteristics of heat flow in a coupled magnetic system are studied.
The coupled system is composed of a gapped chain and a gapless chain. The
system size is assumed to be quite small so that the mean free path is
comparable to it. When the parameter set of the temperatures of reservoirs is
exchanged, the characteristics of heat flow are studied with the Keldysh Green
function technique. The asymmetry of current is found in the presence of a
local equilibrium process at the contact between the magnetic systems. The
present setup is realistic and such an effect will be observed in real
experiments. We also discuss the simple phenomenological explanation to obtain
the asymmetry.Comment: 13 pages, 3 figure
- …
