2,234 research outputs found

    Collective intelligence: aggregation of information from neighbors in a guessing game

    Get PDF
    Complex systems show the capacity to aggregate information and to display coordinated activity. In the case of social systems the interaction of different individuals leads to the emergence of norms, trends in political positions, opinions, cultural traits, and even scientific progress. Examples of collective behavior can be observed in activities like the Wikipedia and Linux, where individuals aggregate their knowledge for the benefit of the community, and citizen science, where the potential of collectives to solve complex problems is exploited. Here, we conducted an online experiment to investigate the performance of a collective when solving a guessing problem in which each actor is endowed with partial information and placed as the nodes of an interaction network. We measure the performance of the collective in terms of the temporal evolution of the accuracy, finding no statistical difference in the performance for two classes of networks, regular lattices and random networks. We also determine that a Bayesian description captures the behavior pattern the individuals follow in aggregating information from neighbors to make decisions. In comparison with other simple decision models, the strategy followed by the players reveals a suboptimal performance of the collective. Our contribution provides the basis for the micro-macro connection between individual based descriptions and collective phenomena.Comment: 9 pages, 9 figure

    Competition in the presence of aging: order, disorder, and synchronized collective behavior

    Get PDF
    We study the stochastic dynamics of coupled states with transition probabilities depending on local persistence, this is, the time since a state has changed. When the population has a preference to adopt older states the system orders quickly due to the dominance of the old state. When preference for new states prevails, the system can show coexistence of states or synchronized collective behavior resulting in long ordering times. In this case, the magnetization m(t)m(t) of the system oscillates around m(t)=0m(t)=0. Implications for social systems are discussed.Comment: 5 pages, 5 figures, lette

    Hypoxic Cell Waves around Necrotic Cores in Glioblastoma: A Biomathematical Model and its Therapeutic Implications

    Full text link
    Glioblastoma is a rapidly evolving high-grade astrocytoma that is distinguished pathologically from lower grade gliomas by the presence of necrosis and microvascular hiperplasia. Necrotic areas are typically surrounded by hypercellular regions known as "pseudopalisades" originated by local tumor vessel occlusions that induce collective cellular migration events. This leads to the formation of waves of tumor cells actively migrating away from central hypoxia. We present a mathematical model that incorporates the interplay among two tumor cell phenotypes, a necrotic core and the oxygen distribution. Our simulations reveal the formation of a traveling wave of tumor cells that reproduces the observed histologic patterns of pseudopalisades. Additional simulations of the model equations show that preventing the collapse of tumor microvessels leads to slower glioma invasion, a fact that might be exploited for therapeutic purposes.Comment: 29 pages, 9 figure

    Nondiffractive sonic crystals

    Get PDF
    We predict theoretically the nondiffractive propagation of sonic waves in periodic acoustic media (sonic crystals), by expansion into a set of plane waves (Bloch mode expansion), and by finite difference time domain calculations of finite beams. We also give analytical evaluations of the parameters for nondiffractive propagation, as well as the minimum size of the nondiffractively propagating acoustic beams.Comment: 7 figures, submitted to J. Acoust. Soc. A

    Driving defect modes of Bose-Einstein condensates in optical lattices

    Full text link
    We present an approximate analytical theory and direct numerical computation of defect modes of a Bose-Einstein condensate loaded in an optical lattice and subject to an additional localized (defect) potential. Some of the modes are found to be remarkably stable and can be driven along the lattice by means of a defect moving following a step-like function defined by the period of Josephson oscillations and the macroscopic stability of the atoms.Comment: 4 pages, 5 figure
    • …
    corecore