21 research outputs found

    Una experiencia educativa con la tableta digital en el aula

    Get PDF
    Memoria ID-0076. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2014-2015.[ES]La aparición de las tabletas digitales supone un punto de inflexión en el desarrollo educativo, la forma que podemos acceder a Internet, en la portabilidad, en la conectividad sencilla, en la multifuncionalidad, en la consulta y en la generación de contenidos. Dadas sus peculiaridades, la tableta digital puede ser un elemento interesante de cara a su utilización educativa. Eso es lo que pretende averiguar el proyecto DEDOS: una experiencia educativa con la tableta digita

    Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry

    Get PDF
    Aim To determine whether healthcare workers (HCW) hospitalized in Spain due to COVID-19 have a worse prognosis than non-healthcare workers (NHCW). Methods Observational cohort study based on the SEMI-COVID-19 Registry, a nationwide registry that collects sociodemographic, clinical, laboratory, and treatment data on patients hospitalised with COVID-19 in Spain. Patients aged 20-65 years were selected. A multivariate logistic regression model was performed to identify factors associated with mortality. Results As of 22 May 2020, 4393 patients were included, of whom 419 (9.5%) were HCW. Median (interquartile range) age of HCW was 52 (15) years and 62.4% were women. Prevalence of comorbidities and severe radiological findings upon admission were less frequent in HCW. There were no difference in need of respiratory support and admission to intensive care unit, but occurrence of sepsis and in-hospital mortality was lower in HCW (1.7% vs. 3.9%; p = 0.024 and 0.7% vs. 4.8%; p<0.001 respectively). Age, male sex and comorbidity, were independently associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.211, 95%CI 0.067-0.667, p = 0.008). 30-days survival was higher in HCW (0.968 vs. 0.851 p<0.001). Conclusions Hospitalized COVID-19 HCW had fewer comorbidities and a better prognosis than NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not carry more clinical severity nor mortality

    Muscarinic receptor modulation of protein kinase A, protein kinase C and exocytotic proteins at the neuromuscular junction

    No full text
    La unió neuromuscular (NMJ) utilitza mecanismes de plasticitat per adequar l’alliberament d’acetilcolina (ACh) dins d’un entorn molt dinàmic. Els receptors muscarínics d’acetilcolina (mAChRs) participen com a autoreceptors, ajustant la neurotransmissió. El subtipus M1 activa la proteïna quinasa C (PKC) per potenciar la transmissió, mentre que l’M2 inhibeix la proteïna quinasa A (PKA) per reduir-la. En la passada dècada, grans descobriments ens han aportat un coneixement electrofisiològic extens sobre la senyalització muscarínica. Tanmateix, les dades moleculars segueixen sent escasses i el rol d’alguns segons missatgers resta desconegut. Així doncs, aquesta tesi es realitza amb l’objectiu de caracteritzar com els receptors M1 i M2 modulen les isoformes de PKA i PKC, les seves proteïnes reguladores i les dianes d’exocitosi. Hem analitzat la cascada muscarínica al múscul diafragma de rata usant inhibidors selectius i generals de M1, M2, nPKCε, cPKCβI, PKA i PDK1 i analitzant cada alteració mitjançant Western blot, així com fraccionament subcel·lular i co-immunoprecipitació. També hem fet ús de tècniques immunohistoquímiques i microscòpia confocal per corroborar la localització presinàptica de les molècules d'interès. Els resultats mostren que els nivells del receptor M1 són disminuïts per la via de l’M2. Respecte a la senyalització de la PKA, l’M2 inhibeix la seva activitat regulant la subunitat Cβ a la baixa, la subunitat RIIα/β a l’alta i alliberant RIβ i RIIα al citosol, el que redueix la fosforilació de SNAP-25 (Thr138) i CREB. L’M1 s’interposa en la senyalització M2/PKA reincorporant les subunitats R a la membrana. Respecte la senyalització PKC, ambdós M1 i M2 poden activar la quinasa mestra PDK1, que promou la maduració de les isoformes de PKC βI i ε presinàptiques. L’M1 recluta les dues PKC madures a la membrana i promou la fosforilació de Munc18-1, SNAP-25 i MARCKS. Al contrari, l’M2 regula a la baixa la PKCε de forma dependent de PKA, el que inhibeix la síntesi de Munc18-1 i la seva fosforilació. El treball present contribueix a comprendre l’acció conjunta i interdependent dels receptors M1 i M2 per regular la neurotransmissió.La unión neuromuscular (NMJ) utiliza mecanismos de plasticidad para adecuar la liberación de acetilcolina (ACh) a un entorno muy dinámico. Los receptores muscarínicos de acetilcolina (mAChRs) participan como autorreceptores, ajustando la neurotransmisión. El subtipo M1 activa la proteína quinasa C (PKC) para potenciar la transmisión, mientras que el M2 inhibe la proteína quinasa A (PKA) para reducirla. La interesante investigación de la pasada década nos ha aportado un extenso conocimiento electrofisiológico sobre la señalización muscarínica. Aun así, los datos moleculares siguen siendo escasos y el rol de algunos segundos mensajeros permanece desconocido. Así pues, esta tesis tiene el objetivo de caracterizar cómo los receptores M1 y M2 regulan las isoformas de PKA y PKC, sus proteínas reguladoras y las dianas de exocitosis. Para ello, hemos analizado la cascada muscarínica en el músculo diafragma de rata usando inhibidores selectivos y generales de M1, M2, nPKCε, cPKCβI, PKA y PDK1 y analizando dichas alteraciones mediante Western blot, fraccionamiento subcel·lular y co-inmunoprecipitación. También hemos hecho uso de técnicas inmunohistoquímicas y confocales para corroborar la localización presináptica de nuestras moléculas de interés. Los resultados muestran que los niveles del receptor M1 son disminuidos por la vía del M2. Respecto a la señalización PKA, M2 inhibe su actividad total disminuyendo la subunidad Cβ, aumentando las subunidades RIIα/β y liberando a RIβ y RIIα al citosol, lo que reduce la fosforilación de SNAP-25 (Thr138) y CREB. El receptor M1 se interpone en la señalización M2/PKA reincorporando las subunidades R a la membrana. Respecto la señalización PKC, ambos M1 y M2 pueden activar la quinasa maestra PDK1, que promueve la maduración de las isoformas PKCβI y ε presinápticas. M1 recluta las dos PKC maduras a la membrana y promueve la fosforilación de Munc18-1, SNAP-25 y MARCKS. Al contrario, el M2 inhibe la PKCε de forma dependiente de PKA, lo que también disminuye la síntesis de Munc18-1 y su fosforilación. Este trabajo contribuye a comprender la acción conjunta e interdependiente de los receptores M1 y M2 sobre la neurotransmisión.The neuromuscular junction (NMJ) uses plastic mechanisms to adjust the release of acetylcholine (ACh) to an incredibly dynamic environment. Muscarinic acetylcholine receptors (mAChRs) participate as autoreceptors, tuning neurotransmission. The M1 subtype activates protein kinase C (PKC) to enhance the release, whereas M2 inhibits protein kinase A (PKA) to decrease it. The captivating research in the past decade has provided extensive electrophysiological knowledge about muscarinic signaling. However, the molecular data accompanying this knowledge was limited; and the role of some second messengers remained elusive. Therefore, the present thesis aimed to characterize how M1 and M2 mAChRs regulate the multiple PKA and PKC subunits, their scaffolds and exocytotic targets. We analyzed the muscarinic cascade at the rat diaphragm muscle by testing selective and general inhibitors of M1 and M2 mAChR, nPKCε, cPKCβI, PKA and PDK1 and analyzed each alteration mainly by Western blotting as well as subcellular fractionation and co-immunoprecipitation. We also made use of immunohistochemical and confocal techniques to corroborate the presynaptic location of our molecules of interest. Our results show that M1 receptors are downregulated by the M2 pathway. Regarding PKA signaling, M2 inhibits PKA activity by downregulating Cβ subunit, upregulating RIIα/β and liberating RIβ and RIIα to the cytosol, which reduces the phosphorylation of SNAP-25 on Thr138 and CREB. M1 signaling crosstalks with M2/PKA by recruiting R subunits to the membrane. Regarding PKC signaling, both M1 and M2 mAChR activate the master kinase PDK1, which promotes the priming of the presynaptic PKCβI and PKCε isoforms. M1 recruits both primed PKCs to the membrane and promotes Munc18-1, SNAP-25 and MARCKS phosphorylation. In contrast, M2 downregulates PKCε through a PKA-dependent pathway, which inhibits Munc18-1 synthesis and its PKC-phosphorylation. The results demonstrate that M1 and M2 mAChRs perform a coordinated and interdependent signaling to modulate neurotransmission at the NMJ

    Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction

    No full text
    Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M1, M2 and M4), adenosine receptors (AR; A1 and A2A) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC), to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A1, M1 and TrkB operate mainly by stimulating PKC whereas A2A, M2 and M4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC) in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ). This hypothesis is supported by: (i) the tonic effect (shown by using selective inhibitors) of several membrane receptors that accelerates axon loss between postnatal days P5–P9; (ii) the synergistic, antagonic and modulatory effects (shown by paired inhibition) of the receptors on axonal loss; (iii) the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv) the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and various combinations of selective and specific PKA and PKC inhibitors could help to elucidate the role of these kinases in synapse maturation

    Running and Swimming Differently Adapt the BDNF/TrkB Pathway to a Slow Molecular Pattern at the NMJ

    No full text
    International audiencePhysical exercise improves motor control and related cognitive abilities and reinforces neuroprotective mechanisms in the nervous system. As peripheral nerves interact with skeletal muscles at the neuromuscular junction, modifications of this bidirectional communication by physical activity are positive to preserve this synapse as it increases quantal content and resistance to fatigue, acetylcholine receptors expansion, and myocytes’ fast-to-slow functional transition. Here, we provide the intermediate step between physical activity and functional and morphological changes by analyzing the molecular adaptations in the skeletal muscle of the full BDNF/TrkB downstream signaling pathway, directly involved in acetylcholine release and synapse maintenance. After 45 days of training at different intensities, the BDNF/TrkB molecular phenotype of trained muscles from male B6SJLF1/J mice undergo a fast-to-slow transition without affecting motor neuron size. We provide further knowledge to understand how exercise induces muscle molecular adaptations towards a slower phenotype, resistant to prolonged trains of stimulation or activity that can be useful as therapeutic tools
    corecore