23 research outputs found
Intraspecific Correlations of Basal and Maximal Metabolic Rates in Birds and the Aerobic Capacity Model for the Evolution of Endothermy
The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, Msum (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; Msum and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and Msum only) and examined correlations among these variables. We also measured BMR and Msum in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either Msum or MMR in juncos. Moreover, no significant correlation between Msum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and Msum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and Msum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic links between minimal and maximal metabolic output
Functional Effects of Parasites on Food Web Properties during the Spring Diatom Bloom in Lake Pavin: A Linear Inverse Modeling Analysis
This study is the first assessment of the quantitative impact of parasitic chytrids on a planktonic food web. We used a carbon-based food web model of Lake Pavin (Massif Central, France) to investigate the effects of chytrids during the spring diatom bloom by developing models with and without chytrids. Linear inverse modelling procedures were employed to estimate undetermined flows in the lake. The Monte Carlo Markov chain linear inverse modelling procedure provided estimates of the ranges of model-derived fluxes. Model results support recent theories on the probable impact of parasites on food web function. In the lake, during spring, when ‘inedible’ algae (unexploited by planktonic herbivores) were the dominant primary producers, the epidemic growth of chytrids significantly reduced the sedimentation loss of algal carbon to the detritus pool through the production of grazer-exploitable zoospores. We also review some theories about the potential influence of parasites on ecological network properties and argue that parasitism contributes to longer carbon path lengths, higher levels of activity and specialization, and lower recycling. Considering the “structural asymmetry” hypothesis as a stabilizing pattern, chytrids should contribute to the stability of aquatic food webs
De 1968 a 2008: consecuencias en bioderecho de la revolución sexual.
La libertad sexual es uno de los iconos del 68. Los acontecimientos
de ese año en relación con la liberación de la mujer condujeron a la lucha por
el derecho a la anticoncepción y al aborto. El objeto de este trabajo es el derecho
al aborto como un derecho nacido al amparo de la libertad sexual y su
reivindicación como un derecho a reconocer en las legislaciones positivas. En
el articulo se esgrimen varios argumentos que sostienen que tal reivindicación
supone un cambio en relación con la mentalidad del 48
Long-term responses of North Atlantic calcifying plankton to climate change
The global increase in atmospheric carbon dioxide concentration is potentially threatening marine biodiversity in two ways. First, carbon dioxide and other greenhouse gases accumulating in the atmosphere are causing global warming1. Second, carbon dioxide is altering sea water chemistry, making the ocean more acidic2. Although temperature has a cardinal influence on all biological processes from the molecular to the ecosystem level3, acidification might impair the process of calcification or exacerbate dissolution of calcifying organisms4. Here, we show however that North Atlantic calcifying plankton primarily responded to climate-induced changes in temperatures during the period 1960–2009, overriding the signal from the effects of ocean acidification. We provide evidence that foraminifers, coccolithophores, both pteropod and nonpteropod molluscs and echinoderms exhibited an abrupt shift circa 1996 at a time of a substantial increase in temperature5 and that some taxa exhibited a poleward movement in agreement with expected biogeographical changes under sea temperature warming6,7. Although acidification may become a serious threat to marine calcifying organisms, our results suggest that over the study period the primary driver of North Atlantic calcifying planktonwas oceanic temperature
Potential role of fungi in plankton food web functioning and stability: a simulation analysis based on Lake Biwa inverse model
International audienceRecent investigations of molecular diversity in the plankton of lakes and coastal lagoons have detected an unexpected diversity of fungi including chytrids. Microscopic observations have provided evidence for the presence of two main forms. The sporangia are implied in algal parasitism. The propagules, i.e. uniflagellated zoospores, may constitute an alternate resource for consumers. These results suggest a need to reconsider the concept of plankton food web functioning. In order to describe the potential role of fungi in food web functioning, we revisit the model of carbon flows in the photic zone of the North basin of Lake Biwa in summer, established using the inverse analysis method for estimating missing flow values. In the absence of quantification of the flows induced by fungal activity, simulations are realised of their potential role in the plankton food web. Different rates of parasitism of micro-phytoplankton are tested, with a return of this carbon to the consumer via the consumption of zoospores by mesozooplankton and, at a lower rate, microzooplankton. The presence of this indirect pathway channelling micro-phytoplankton production to the consumers via the fungi, leads to the following trends: (i) an enhancement of the trophic efficiency index, (ii) a decrease of the ratio detritivory/herbivory, (iii) a decrease of the percentage of carbon flowing in cyclic pathways, and (iv) an increase in the relative ascendency of the system. Relative ascendency, which indicates pathways more specialised and less redundant, is related to theories linking food web patterns and stability. A high ascendency in the plankton food web (low trophic level), if connected to a food web of high redundancy at higher trophic levels (e.g. nekton food web) would fit well to the stabilising pattern called structural asymmetry, considered a stability criterion. More precise models, taking into account the species diversity of fungi and the high specificity of their parasitism on the micro-phytoplankton, would further accentuate this observation