43 research outputs found
Plasticity in Colorectal Cancer: Why Cancer Cells Differentiate
The cancer stem cell hypothesis poses that the bulk of differentiated cells are non-tumorigenic and only a subset of cells with self-renewal capabilities drive tumor initiation and progression. This means that differentiation could have a tumor-suppressive effect. Accumulating evidence shows, however, that in some solid tumors, like colorectal cancer, such a hierarchical organization is necessary. The identification of Lgr5 as a reliable marker of normal intestinal epithelial stem cells, together with strategies to trace cell lineages within tumors and the possibility to selectively ablate these cells, have proven the relevance of Lgr5+ cells for cancer progression. On the contrary, the role of Lgr5− cells during this process remains largely unknown. In this review, we explore available evidence pointing towards possible selective advantages of cancer cells organized hierarchically and its resulting cell heterogeneity. Clear evidence of plasticity between cell states, in which loss of Lgr5+ cells can be replenished by dedifferentiation of Lgr5− cells, shows that cell hierarchies could grant adaptive traits to tumors upon changing selective pressures, including those derived from anticancer therapy, as well as during tumor progression to metastasis
BeadNet: Deep learning-based bead detection and counting in low-resolution microscopy images
Motivation
An automated counting of beads is required for many high-throughput experiments such as studying mimicked bacterial invasion processes. However, state-of-the-art algorithms under- or overestimate the number of beads in low-resolution images. In addition, expert knowledge is needed to adjust parameters.
Results
In combination with our image labeling tool, BeadNet enables biologists to easily annotate and process their data reducing the expertise required in many existing image analysis pipelines. BeadNet outperforms state-of-the-art-algorithms in terms of missing, added and total amount of beads.
Availability and implementation
BeadNet (software, code and dataset) is available at https://bitbucket.org/t_scherr/beadnet. The image labeling tool is available at https://bitbucket.org/abartschat/imagelabelingtool
Alternative splicing downstream of EMT enhances phenotypic plasticity and malignant behavior in colon cancer
Phenotypic plasticity allows carcinoma cells to transiently acquire the quasi-mesenchymal features necessary to detach from the primary mass and proceed along the invasion-metastasis cascade. A broad spectrum of epigenetic mechanisms is likely to cause the epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions necessary to allow local dissemination and distant metastasis. Here, we report on the role played by alternative splicing (AS) in eliciting phenotypic plasticity in epithelial malignancies with focus on colon cancer. By taking advantage of the coexistence of subpopulations of fully epithelial (EpCAM(hi)) and quasi-mesenchymal and highly metastatic (EpCAM(lo)) cells in conventional human cancer cell lines, we here show that the differential expression of ESRP1 and other RNA-binding proteins (RBPs) downstream of the EMT master regulator ZEB1 alters the AS pattern of a broad spectrum of targets including CD44 and NUMB, thus resulting in the generation of specific isoforms functionally associated with increased invasion and metastasis. Additional functional and clinical validation studies indicate that both the newly identified RBPs and the CD44s and NUMB2/4 splicing isoforms promote local invasion and distant metastasis and are associated with poor survival in colon cancer. The systematic elucidation of the spectrum of EMT-related RBPs and AS targets in epithelial cancers, apart from the insights in the mechanisms underlying phenotypic plasticity, will lead to the identification of novel and tumor-specific therapeutic targets
Different Involvement of Vimentin during Invasion by Listeria monocytogenes at the Blood–Brain and the Blood–Cerebrospinal Fluid Barriers In Vitro
The human central nervous system (CNS) is separated from the blood by distinct cellular barriers, including the blood–brain barrier (BBB) and the blood–cerebrospinal fluid (CFS) barrier (BCSFB). Whereas at the center of the BBB are the endothelial cells of the brain capillaries, the BCSFB is formed by the epithelium of the choroid plexus. Invasion of cells of either the BBB or the BCSFB is a potential first step during CNS entry by the Gram-positive bacterium Listeria monocytogenes (Lm). Lm possesses several virulence factors mediating host cell entry, such as the internalin protein family—including internalin (InlA), which binds E-cadherin (Ecad) on the surface of target cells, and internalin B (InlB)—interacting with the host cell receptor tyrosine kinase Met. A further family member is internalin (InlF), which targets the intermediate filament protein vimentin. Whereas InlF has been shown to play a role during brain invasion at the BBB, its function during infection at the BCSFB is not known. We use human brain microvascular endothelial cells (HBMEC) and human choroid plexus epithelial papilloma (HIBCPP) cells to investigate the roles of InlF and vimentin during CNS invasion by Lm. Whereas HBMEC present intracellular and surface vimentin (besides Met), HIBCPP cells do not express vimentin (except Met and Ecad). Treatment with the surface vimentin modulator withaferin A (WitA) inhibited invasion of Lm into HBMEC, but not HIBCPP cells. Invasion of Lm into HBMEC and HIBCPP cells is, however, independent of InlF, since a deletion mutant of Lm lacking InlF did not display reduced invasion rates
A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer
10.18632/oncotarget.14563Oncotarget8711530-1154
Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells
Background
CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer.
Methods
After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters.
Results
We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues.
Conclusion
Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers