14 research outputs found

    Protein Control Over Carotenoid Spectroscopy and Functions

    No full text
    The photophysics of pigments is influenced, to an extent depending on its structure, by the properties of the environment. Proteins represent a very specific environment at least in two aspects: i) they are native to most of the pigments in living systems; ii) they facilitate modifications of pigment configuration, leading to changes not only in its spectroscopic properties, but also in its functional abilities. In studies presented in this thesis, femtosecond pump-probe spectroscopy was used to study predominantly the photosynthetic antenna complexes of bacteria and algae. Based on spectroscopic evidence, the structural modifications of pigments imposed by the protein were deduced or hypothesized, together with their functional relevance

    Laser-Promoted Immobilization of Ag Nanoparticles: Effect of Surface Morphology of Poly(ethylene terephthalate)

    No full text
    In the last two decades, the importance of nanomaterials in modern technologies has been unquestionable. Metal nanoparticles are frequently used in many areas of science and technology, delivering unprecedented improvements to properties of the conventional materials. This work introduces an effective tool for preparing a highly enriched poly (ethylene terephthalate) (PET) surface with silver nanoparticles, firmly immobilized in the same surface area on polymer. We showed that besides pristine polymer, this approach may be successfully applied also on laser pre-treated PET with laser-induced periodic surface structures. At the same time, its final nanostructure may be effectively controlled by laser fluence applied during the immobilization process

    Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids

    No full text
    We report on a novel technique of surface texturing of polyethylene terephthalate (PET) foil in the presence of silver nanoparticles (AgNPs). This approach provides a variable surface morphology of PET evenly decorated with AgNPs. Surface texturing occurred in silver nanoparticle colloids of different concentrations under the action of pulse excimer laser. Surface morphology of PET immobilized with AgNPs was observed by AFM and FEGSEM. Atomic concentration of silver was determined by XPS. A presented concentration-controlled procedure of surface texturing of PET in the presence of silver colloids leads to a highly nanoparticle-enriched polymer surface with a variable morphology and uniform nanoparticle distribution

    The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid

    No full text
    In this article, we present a unique combination of techniques focusing on the immobilization of noble metal nanoparticles into a honeycomb polystyrene pattern prepared with the improved phase-separation technique. The procedure consists of two main steps: the preparation of the honeycomb pattern (HCP) on a perfluoroethylenepropylene substrate (FEP), followed by an immobilization procedure realized by the honeycomb pattern’s exposure to an excimer laser in a noble metal nanoparticle solution. The surface physico-chemical properties, mainly the surface morphology and chemistry, are characterized in detail in the study. The two-step procedure represents the unique architecture of the surface immobilization process, which reveals a wide range of potential applications, mainly in tissue engineering, but also as substrates for analytical use

    Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria.

    No full text
    International audienceA quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP

    Steady-state spectra of purified PS complexes from <i>G</i>. <i>phototrophica</i>.

    No full text
    <p>(A) Absorption spectra recorded at room temperature (red line) and at 77 K (blue line). (B) The thick line shows the LD (<i>LD</i> = <i>A</i><sub>H</sub>—<i>A</i><sub>V</sub>) spectra of the PS complex embedded in polyacrylamide gel. <i>A</i><sub>H</sub> and <i>A</i><sub>V</sub> correspond to absorbance of horizontally and vertically polarized light, respectively. For a flat, disk-like particle in a vertically compressed gel, the horizontal direction is parallel with the particle plane, vertical with particle normal. The thin line shows the reduced LD, <i>LD</i> / <i>Abs</i>., where <i>Abs</i>. is isotropic absorbance. (C) Circular dichroism spectrum of PS complexes in solution. All dichroic spectra were measured at room temperature. Abs, absorbance; CD, circular dichroism; LD, linear dichroism; mdeg, millidegree; PS, photosynthetic; RT, room temperature.</p
    corecore