3,474 research outputs found

    Study of the Gauge Mediation Signal with Non-pointing Photons at the CERN LHC

    Get PDF
    In this paper we study the gauge mediation signal with the ATLAS detector at the CERN LHC. We focus on the case where the NLSP is the long-lived lightest neutralino (χ~10\tilde{\chi}^0_1) which decays dominantly into a photon (Îł\gamma) and a gravitino (G~\tilde{G}). A non-pointing photon from the neutralino decay can be detected with good position and time resolutions by the electormagnetic calorimeter (ECAL), while the photon momentum would be precisely measured if the photon is converted inside the inner tracking detector before reaching the ECAL. A new technique is developed to determine the masses of the slepton (ℓ~\tilde{\ell}) and the neutralino from events with a lepton and a converted non-pointing photon arising from the cascade decay ℓ~→ℓχ~10→ℓγG~\tilde{\ell}\to \ell\tilde{\chi}^0_1\to \ell\gamma \tilde{G}. A Monte Carlo simulation at a sample point shows that the masses would be measured with an error of 3% for O\cal{O}(100) selected ℓγ\ell\gamma pairs. Once the sparticle masses are determined by this method, the decay time and momentum of the neutralino are solved using the ECAL data and the lepton momentum only, for all ℓγ\ell\gamma pairs without the photon conversion. We estimate the sensitivity to the neutralino lifetime for cτ=10c\tau=10 cm to O\cal{O}(10) m.Comment: 19 page, 7 figures, revte

    Precision Higgs boson mass determination at lepton colliders

    Full text link
    We demonstrate that a measurement of the Bjorken process e+e−,ÎŒ+Ό−→ZHe^+e^-, \mu^+\mu^-\to ZH in the threshold region can yield a precise determination of the Higgs boson mass. With an integrated luminosity of 100fb−1100 fb^{-1}, it is possible to measure the Higgs mass to within 60 MeV (100 MeV) for m_H=100 GeV (150 GeV).Comment: 11 pages, full postscript file also available via anonymous ftp at ftp://ucdhep.ucdavis.edu/gunion/zh.p

    HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations

    Full text link
    Explicit answer is given for the HOMFLY polynomial of the figure eight knot 414_1 in arbitrary symmetric representation R=[p]. It generalizes the old answers for p=1 and 2 and the recently derived results for p=3,4, which are fully consistent with the Ooguri-Vafa conjecture. The answer can be considered as a quantization of the \sigma_R = \sigma_{[1]}^{|R|} identity for the "special" polynomials (they define the leading asymptotics of HOMFLY at q=1), and arises in a form, convenient for comparison with the representation of the Jones polynomials as sums of dilogarithm ratios. In particular, we construct a difference equation ("non-commutative A-polynomial") in the representation variable p. Simple symmetry transformation provides also a formula for arbitrary antisymmetric (fundamental) representation R=[1^p], which also passes some obvious checks. Also straightforward is a deformation from HOMFLY to superpolynomials. Further generalizations seem possible to arbitrary Young diagrams R, but these expressions are harder to test because of the lack of alternative results, even partial.Comment: 14 page

    Stau Kinks at the LHC

    Full text link
    The kink signature of charged tracks is predicted in some SUSY models, and it is very characteristic signal at collider experiments. We study the kink signature at LHC using two models, SUSY models with a gravitino LSP and a stau NLSP, and R-parity violating SUSY models with a stau (N)LSP. We find that a large number of kink events can be discovered in a wide range of the SUSY parameters, when the decay length is O(10-10^5)mm. Model discrimination by identifying the daughter particles of the kink tracks is also discussed.Comment: 19 pages, 4 figures; Version published in JHEP; abstract refined, reference added and several minor corrections in tex

    Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    Get PDF
    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques

    Damping of supernova neutrino transitions in stochastic shock-wave density profiles

    Full text link
    Supernova neutrino flavor transitions during the shock wave propagation are known to encode relevant information not only about the matter density profile but also about unknown neutrino properties, such as the mass hierarchy (normal or inverted) and the mixing angle theta_13. While previous studies have focussed on "deterministic" density profiles, we investigate the effect of possible stochastic matter density fluctuations in the wake of supernova shock waves. In particular, we study the impact of small-scale fluctuations on the electron (anti)neutrino survival probability, and on the observable spectra of inverse-beta-decay events in future water-Cherenkov detectors. We find that such fluctuations, even with relatively small amplitudes, can have significant damping effects on the flavor transition pattern, and can partly erase the shock-wave imprint on the observable time spectra, especially for sin^2(theta_13) > O(10^-3).Comment: v2 (23 pages, including 6 eps figures). Typos removed, references updated, matches the published versio

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table

    Measuring Invisible Particle Masses Using a Single Short Decay Chain

    Full text link
    We consider the mass measurement at hadron colliders for a decay chain of two steps, which ends with a missing particle. Such a topology appears as a subprocess of signal events of many new physics models which contain a dark matter candidate. From the two visible particles coming from the decay chain, only one invariant mass combination can be formed and hence it is na\"ively expected that the masses of the three invisible particles in the decay chain cannot be determined from a single end point of the invariant mass distribution. We show that the event distribution in the log⁥(E1T/E2T)\log(E_{1T}/E_{2T}) vs. invariant mass-squared plane, where E1TE_{1T}, E2TE_{2T} are the transverse energies of the two visible particles, contains the information of all three invisible particle masses and allows them to be extracted individually. The experimental smearing and combinatorial issues pose challenges to the mass measurements. However, in many cases the three invisible particle masses in the decay chain can be determined with reasonable accuracies.Comment: 45 pages, 32 figure

    Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Get PDF
    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to JINS
    • 

    corecore