6,429 research outputs found

    Satellite-based trends of solar radiation and cloud parameters in Europe

    Get PDF
    Solar radiation is the main driver of the Earth\u2019s climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990\u2019s is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out

    Angular distributions in hard exclusive production of pion pairs

    Full text link
    Using the leading order amplitudes of hard exclusive electroproduction of pion pairs we have analyzed the angular distribution of the two produced particles. At leading twist a pion pair can be produced only in an isovector or an isoscalar state. We show that certain components of the angular distribution only get contributions from the interference of the I=1 and the (much smaller) I=0 amplitude. Therefore our predictions prove to be a good probe of isospin zero pion pair production. We predict effects of a measurable size that could be observed at experiments like HERMES. We also discuss how hard exclusive pion pair production can provide us with new information on the effective chiral Lagrangian.Comment: 17 pages, version to appear in Phys. Rev.

    Measurements of hydrogen cyanide (HCN) and acetylene (C2H2) from the Infrared Atmospheric Sounding Interferometer (IASI)

    Full text link
    Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform InfraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values

    Early warning system of natural hazards and decrease of climat impact from aviation; ALARM funded project

    Get PDF
    Aviation safety can be jeopardised by multiple hazards arising from natural phenomena, e.g., severe weather, aerosols/gases from natural hazard, and space weather. Furthermore, there are the anthropogenic emissions and climate impact of aviation that could be reduced. To mitigate such risk and/or to decrease climate impact, tactical decision-making processes could be enhanced through the development of multihazard monitoring and Early Warning System (EWS). With this objective in mind, ALARM consortium has implemented alert products (i.e., observations, detection and data access in near realtime) and tailored product (notifications, flight level — FL contamination, risk area, and visualization of emission/risk level) related to Natural Airborne Hazard (NAH, i.e., volcanic, dust and smoke clouds) and environmental hotspots. New selective detection, nowcasting and forecasts of such risks for aviation have been implemented as part of ALARM prototype EWS. This system has two functionalities. One is to provide alerts on a global coverage using remote sensing from satellites and models (focus on NAH, space weather activity and environmental hotspots). A second focuses on detecting severe weather and exceptional SO2 conditions around a selection of few airports, on providing nowcasts and forecasts of risk conditions
    corecore