39 research outputs found

    The Frequency of Warm Debris Disks and Transition Disks in a Complete Sample of Intermediate-Mass GLIMPSE Stars: Placing Constraints on Disk Lifetimes

    Full text link
    The incidence of dusty debris disks around low- and intermediate-mass stars has been investigated numerous times in order to understand the early stages of planet formation. Most notably, the IRAS mission observed the entire sky at mid- and far-IR wavelengths, identifying the first debris disk systems, but was unable to detect a statistically significant sample of warm debris disks due to its limited sensitivity at 12 microns. Using Tycho-2 Spectral Catalog stars previously shown to exhibit 8 micron mid-infrared circumstellar excesses confirmed at 24 microns in the Spitzer GLIMPSE survey, we investigate the frequency of mid-IR excesses among intermediate-mass (2--4 solar mass) stars in a complete volume-limited sample. Our study of 338 stars is four times larger than a complete sample of 12 micron sources from the IRAS Point Source Catalog. We find that 0.3+-0.3% of intermediate-mass stars exhibit a signature of a possible terrestrial-temperature debris disks at wavelengths of 8 microns and greater. We also find that 1.2+-0.6% of intermediate-mass stars exhibit evidence for circumstellar disks undergoing inner disk clearing, i.e., candidate transition disk systems. Using stellar lifetimes and the frequency of transition and primordial disks within a given spectral type, we find that pre-main-sequence disks around intermediate-mass stars dissipate in 5+-2 Myr, consistent with other studies.Comment: 4 Figures. Accepted in the Astronomical Journa

    Imaging the Molecular Disk Orbiting the Twin Young Suns of V4046 Sgr

    Full text link
    We have imaged the disk surrounding the nearby (D~73 pc), ~12 Myr, classical T Tauri binary system V4046 Sgr with the Submillimeter Array (SMA) at an angular resolution of ~2". We detect a rotating disk in 12CO(2-1) and 13CO(2-1) emission, and resolve the continuum emission at 1.3 mm. We infer disk gas and dust masses of ~110 and ~40 Earth masses, respectively. Fits to a power-law disk model indicate that the molecular disk extends to ~370 AU and is viewed at an inclination of between ~33 and ~39 degrees for dynamical stellar masses ranging from 1.8 MM_\odot down to 1.5 MM_\odot (the range of total mass previously determined for the central, 2.4 day spectroscopic binary). This range of disk inclination is consistent with that assumed in deducing the central binary mass (i.e., 35 degrees), suggesting that the V4046 Sgr binary system and its circumbinary, molecular disk are coplanar. In light of the system's age and binarity, the presence of an extensive molecular disk orbiting V4046 Sgr provides constraints on the timescales of processes related to Jovian planet formation, and demonstrates that circumbinary Jovian planets potentially could form around close binary systems.Comment: 17 pages, 8 figures, accepted for publication in Ap

    A Sample of Intermediate-Mass Star-Forming Regions: Making Stars at Mass Column Densities <1 g/cm^2

    Full text link
    In an effort to understand the factors that govern the transition from low- to high-mass star formation, we identify for the first time a sample of intermediate-mass star-forming regions (IM SFRs) where stars up to - but not exceeding - 8 solar masses are being produced. We use IRAS colors and Spitzer Space Telescope mid-IR images, in conjunction with millimeter continuum and CO maps, to compile a sample of 50 IM SFRs in the inner Galaxy. These are likely to be precursors to Herbig AeBe stars and their associated clusters of low-mass stars. IM SFRs constitute embedded clusters at an early evolutionary stage akin to compact HII regions, but they lack the massive ionizing central star(s). The photodissociation regions that demarcate IM SFRs have typical diameters of ~1 pc and luminosities of ~10^4 solar luminosities, making them an order of magnitude less luminous than (ultra)compact HII regions. IM SFRs coincide with molecular clumps of mass ~10^3 solar masses which, in turn, lie within larger molecular clouds spanning the lower end of the giant molecular cloud mass range, 10^4-10^5 solar masses. The IR luminosity and associated molecular mass of IM SFRs are correlated, consistent with the known luminosity-mass relationship of compact HII regions. Peak mass column densities within IM SFRs are ~0.1-0.5 g/cm^2, a factor of several lower than ultra-compact HII regions, supporting the proposition that there is a threshold for massive star formation at ~1 g/cm^2.Comment: 61 pages, 6 tables, 20 figures. Accepted for publication in the Astronomical Journa

    The Bubbling Galactic Disk

    Get PDF
    A visual examination of the images from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) has revealed 322 partial and closed rings that we propose represent partially or fully enclosed three-dimensional bubbles. We argue that the bubbles are primarily formed by hot young stars in massive star formation regions. We have found an average of about 1.5 bubbles per square degree. About 25% of the bubbles coincide with known radio H II regions, and about 13% enclose known star clusters. It appears that B4-B9 stars (too cool to produce detectable radio H II regions) probably produce about three-quarters of the bubbles in our sample, and the remainder are produced by young O-B3 stars that produce detectable radio H II regions. Some of the bubbles may be the outer edges of H II regions where PAH spectral features are excited and may not be dynamically formed by stellar winds. Only three of the bubbles are identified as known SNRs. No bubbles coincide with known planetary nebulae or W-R stars in the GLIMPSE survey area. The bubbles are small. The distribution of angular diameters peaks between 1' and 3' with over 98% having angular diameters less than 10' and 88% less than 4'. Almost 90% have shell thicknesses between 0.2 and 0.4 of their outer radii. Bubble shell thickness increases approximately linearly with shell radius. The eccentricities are rather large, peaking between 0.6 and 0.7; about 65% have eccentricities between 0.55 and 0.85

    Early-type stars in the core of the young open cluster Westerlund2

    Get PDF
    Aims. The properties of the early-type stars in the core of the Westerlund2 cluster are examined in order to establish a link between the cluster and the very massive Wolf-Rayet binary WR20a as well as the HII complex RCW49. Methods. Photometric monitoring as well as spectroscopic observations of Westerlund2 are used to search for light variability and to establish the spectral types of the early-type stars in the cluster core. Results. The first light curves of the eclipsing binary WR20a in B and V filters are analysed and a distance of 8kpc is inferred. Three additional eclipsing binaries, which are probable late O or early B-type cluster members, are discovered, but none of the known early O-type stars in the cluster displays significant photometric variability above 1% at the 1-sigma level. The twelve brightest O-type stars are found to have spectral types between O3 and O6.5, significantly earlier than previously thought. Conclusions. The distance of the early-type stars in Westerlund2 is established to be in excellent agreement with the distance of WR20a, indicating that WR20a actually belongs to the cluster. Our best estimate of the cluster distance thus amounts to 8.0pm1.4kpc. Despite the earlier spectral types, the currently known population of early-type stars in Westerlund2 does not provide enough ionizing photons to account for the radio emission of the RCW49 complex. This suggests that there might still exist a number of embedded early O-stars in RCW49.Comment: 11 pages, 8 figures (figs 1, 3 and 5 in jpg), accepted for publication by A&

    A Radial Velocity Survey of the Cygnus OB2 Association

    Get PDF
    We conducted a radial velocity survey of the Cygnus OB2 Association over a 6 year (1999 - 2005) time interval to search for massive close binaries. During this time we obtained 1139 spectra on 146 OB stars to measure mean systemic radial velocities and radial velocity variations. We spectroscopically identify 73 new OB stars for the first time, the majority of which are likely to be Association members. Spectroscopic evidence is also presented for a B3Iae classification and temperature class variation (B3 - B8) on the order of 1 year for Cygnus OB2 No. 12. Calculations of the intial mass function with the current spectroscopic sample yield Gamma = -2.2 +/- 0.1. Of the 120 stars with the most reliable data, 36 are probable and 9 are possible single-lined spectroscopic binaries. We also identify 3 new and 8 candidate double-lined spectroscopic binaries. These data imply a lower limit on the massive binary fraction of 30% - 42%. The calculated velocity dispersion for Cygnus OB2 is 2.44 +/- km/s, which is typical of open clusters. No runaway OB stars were found.Comment: 56 pages, 23 figures, 5 tables, accepted for publication in the Astrophysical Journa

    A GLIMPSE into the Nature of Galactic Mid-IR Excesses

    Full text link
    We investigate the nature of the mid-IR excess for 31 intermediate-mass stars that exhibit an 8 micron excess in either the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire or the Mid-Course Space Experiment using high resolution optical spectra to identify stars surrounded by warm circumstellar dust. From these data we determine projected stellar rotational velocities and estimate stellar effective temperatures for the sample. We estimate stellar ages from these temperatures, parallactic distances, and evolutionary models. Using MIPS [24] measurements and stellar parameters we determine the nature of the infrared excess for 19 GLIMPSE stars. We find that 15 stars exhibit Halpha emission and four exhibit Halpha absorption. Assuming that the mid-IR excesses arise in circumstellar disks, we use the Halpha fluxes to model and estimate the relative contributions of dust and free-free emission. Six stars exhibit Halpha fluxes that imply free-free emission can plausibly explain the infrared excess at [24]. These stars are candidate classical Be stars. Nine stars exhibit Halpha emission, but their Halpha fluxes are insufficient to explain the infrared excesses at [24], suggesting the presence of a circumstellar dust component. After the removal of the free-free component in these sources, we determine probable disk dust temperatures of Tdisk~300-800 K and fractional infrared luminosities of L(IR)/L(*)~10^-3. These nine stars may be pre-main-sequence stars with transitional disks undergoing disk clearing. Three of the four sources showing Halpha absorption exhibit circumstellar disk temperatures ~300-400 K, L(IR)/L(*)~10^-3, IR colors K-[24]< 3.3, and are warm debris disk candidates. One of the four Halpha absorption sources has K-[24]> 3.3 implying an optically thick outer disk and is a transition disk candidate.Comment: 17 figures. Accepted for publication in Ap

    The Frequency of Mid-Infrared Excess Sources in Galactic Surveys

    Get PDF
    We have identified 230 Tycho-2 Spectral Catalog stars that exhibit 8 micron mid-infrared extraphotospheric excesses in the MidCourse Space Experiment (MSX) and Spitzer Space Telescope Galactic Legacy MidPlane Survey Extraordinaire (GLIMPSE) surveys. Of these, 183 are either OB stars earlier than B8 in which the excess plausibly arises from a thermal bremsstrahlung component or evolved stars in which the excess may be explained by an atmospheric dust component. The remaining 47 stars have spectral classifications B8 or later and appear to be main sequence or late pre-main-sequence objects harboring circumstellar disks. Six of the 47 stars exhibit multiple signatures characteristic of pre-main-sequence circumstellar disks, including emission lines, near-infrared K-band excesses, and X-ray emission. Approximately one-third of the remaining 41 sources have emission lines suggesting relative youth. Of the 25 GLIMPSE stars with SST data at >24 microns, 20 also show an excess at 24 microns. Three additional objects have 24 micron upper limits consistent with possible excesses, and two objects have photospheric measurements at 24 microns. Six MSX sources had a measurement at wavelengths >8 microns. We modeled the excesses in 26 stars having two or more measurements in excess of the expected photospheres as single-component blackbodies. We determine probable disk temperatures and fractional infrared luminosities in the range 191 < T < 787 and 3.9x10^-4 < L_IR/L_* < 2.7x10^-1. We estimate a lower limit on the fraction of Tycho-2 Spectral Catalog main-sequence stars having mid-IR, but not near-IR, excesses to be 1.0+-0.3%.Comment: Accepted to Ap
    corecore