132 research outputs found

    Circularly Polarized Molecular High Harmonic Generation Using a Bicircular Laser

    Get PDF
    We investigate the process of circularly polarized high harmonic generation in molecules using a bicircular laser field. In this context, we show that molecules offer a very robust framework for the production of circularly polarized harmonics, provided their symmetry is compatible with that of the laser field. Using a discrete time-dependent symmetry analysis, we show how all the features (harmonic order and polarization) of spectra can be explained and predicted. The symmetry analysis is generic and can easily be applied to other target and/or field configurations

    Uniform semiclassical theory of avoided crossings

    Get PDF
    A voided crossings influence spectra and intramolecular redistribution of energy. A semiclassical theory of these avoided crossings shows that when primitive semiclassical eigenvalues are plotted vs a parameter in the Hamiltonian they cross instead of avoiding each other. The trajectories for each are connected by a classically forbidden path. To obtain the avoided crossing behavior, a uniform semiclassical theory of avoided crossings is presented in this article for the case where that behavior is generated by a classical resonance. A low order perturbation theory expression is used as the basis for a functional form for the treatment. The parameters in the expression are evaluated from canonical invariants (phase integrals) obtained from classical trajectory data. The results are compared with quantum mechanical results for the splitting, and reasonable agreement is obtained. Other advantages of the uniform method are described

    Quantum-classical correspondence in circularly polarized high harmonic generation

    Get PDF
    Using numerical simulations, we show that atomic high order harmonic generation, HHG, with a circularly polarized laser field offers an ideal framework for quantum-classical correspondence in strong field physics. With an appropriate initialization of the system, corresponding to a superposition of ground and excited state(s), simulated HHG spectra display a narrow strip of strong harmonic radiation preceded by a gap of missing harmonics in the lower part of the spectrum. In specific regions of the spectra, HHG tends to lock to circularly polarized harmonic emission. All these properties are shown to be closely related to a set of key classical periodic orbits that organize the recollision dynamics in an intense, circularly polarized field

    Statistical Theory of Asteroid Escape Rates

    Get PDF
    Transition states in phase space are identified and shown to regulate the rate of escape of asteroids temporarily captured in circumplanetary orbits. The transition states, similar to those occurring in chemical reaction dynamics, are then used to develop a statistical semianalytical theory for the rate of escape of asteroids temporarily captured by Mars. Theory and numerical simulations are found to agree to better than 1%. These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations

    Production of trans-Neptunian binaries through chaos-assisted capture

    Full text link
    The recent discovery of binary objects in the Kuiper-belt opens an invaluable window into past and present conditions in the trans-Neptunian part of the Solar System. For example, knowledge of how these objects formed can be used to impose constraints on planetary formation theories. We have recently proposed a binary-object formation model based on the notion of chaos-assisted capture. Here we present a more detailed analysis with calculations performed in the spatial (three-dimensional) three- and four-body Hill approximations. It is assumed that the potential binary partners are initially following heliocentric Keplerian orbits and that their relative motion becomes perturbed as these objects undergo close encounters. First, the mass, velocity, and orbital element distribu- tions which favour binary formation are identified in the circular and elliptical Hill limits. We then consider intruder scattering in the circular Hill four-body problem and find that the chaos-assisted capture mechanism is consistent with observed, apparently randomly distributed, binary mutual orbit inclinations. It also predicts asymmetric distributions of retrograde versus prograde orbits. The time-delay induced by chaos on particle transport through the Hill sphere is analogous to the formation of a resonance in a chemical reaction. Implications for binary formation rates are considered and the 'fine-tuning' problem recently identified by Noll et al. (2007) is also addressed.Comment: submitted to MNRA

    Stochastic Transition States: Reaction Geometry amidst Noise

    Get PDF
    Classical transition state theory (TST) is the cornerstone of reaction rate theory. It postulates a partition of phase space into reactant and product regions, which are separated by a dividing surface that reactive trajectories must cross. In order not to overestimate the reaction rate, the dynamics must be free of recrossings of the dividing surface. This no-recrossing rule is difficult (and sometimes impossible) to enforce, however, when a chemical reaction takes place in a fluctuating environment such as a liquid. High-accuracy approximations to the rate are well known when the solvent forces are treated using stochastic representations, though again, exact no-recrossing surfaces have not been available. To generalize the exact limit of TST to reactive systems driven by noise, we introduce a time-dependent dividing surface that is stochastically moving in phase space such that it is crossed once and only once by each transition path

    Eigenvalues of the Schrödinger equation for a periodic potential with nonperiodic boundary conditions: A uniform semiclassical analysis

    Get PDF
    A uniform semiclassical expression for the eigenvalues of a one dimensional periodic Schrödinger equation with nonperiodic boundary conditions has been derived. The potential energy function can have any number of symmetric or asymmetric barriers and wells. The treatment is uniform in that the classical turning points can come close together, coalesce, and move into the complex plane as the energy passes through a barrier maximum. A detailed application is made to Mathieu functions of integer order; the equations themselves include the case of fractional order. Approximate semiclassical expressions are derived for the widths of the energy bands and the energy gaps of the periodic Mathieu equation when these quantities are small. The semiclassical results give a physical interpretation to formulas present in the mathematical literature and to the decrease in the splitting of a sequence of avoided crossings with increasing quantum numbers in coupled oscillator systems. Numerical calculations are reported to illustrate the high accuracy of the semiclassical formulas

    Transition State Theory For Laser-Driven Reactions

    Get PDF
    Recent developments in transition state theory brought about by dynamical systems theory are extended to time-dependent systems such as laser-driven reactions. Using time-dependent normal form theory, the authors construct a reaction coordinate with regular dynamics inside the transition region. The conservation of the associated action enables one to extract time-dependent invariant manifolds that act as separatrices between reactive and nonreactive trajectories and thus make it possible to predict the ultimate fate of a trajectory. They illustrate the power of our approach on a driven Henon-Heiles system, which serves as a simple example of a reactive system with several open channels. The present generalization of transition state theory to driven systems will allow one to study processes such as the control of chemical reactions through laser pulses
    corecore