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Recent developments in transition state theory brought about by dynamical systems theory are
extended to time-dependent systems such as laser-driven reactions. Using time-dependent normal
form theory, the authors construct a reaction coordinate with regular dynamics inside the transition
region. The conservation of the associated action enables one to extract time-dependent invariant
manifolds that act as separatrices between reactive and nonreactive trajectories and thus make it
possible to predict the ultimate fate of a trajectory. They illustrate the power of our approach on a
driven Hénon-Heiles system, which serves as a simple example of a reactive system with several
open channels. The present generalization of transition state theory to driven systems will allow one
to study processes such as the control of chemical reactions through laser pulses. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2720841�

I. INTRODUCTION

The transition state �TS�, a dividing hypersurface be-
tween the reactant and the product regions in phase space,1–3

is one of the central concepts in the theory of chemical re-
actions. It plays an important role in determining the rate
constant and also provides an intuitive understanding of the
reaction through the geometrical structure of the phase space.
The validity of TS theory is based on the “no-recrossing”
assumption, which demands that all the reactive trajectories
that go from the reactant to the product region or vice versa
must cross the TS once and only once, whereas nonreactive
trajectories do not cross it at all. Through a recent approach
to TS theory1–9 based on the geometric theory of dynamical
systems, a dividing surface that satisfies this condition can be
constructed for autonomous Hamiltonian systems with arbi-
trarily many degrees of freedom. The approach assumes only
that the reactant and product regions are separated by an
energy barrier, i.e., a rank-1 saddle point of the effective
potential, where the local dynamics decouples into a single
unstable reactive mode and several stable bath modes. The
dividing surface thus obtained is bounded by a normally hy-
perbolic invariant manifold �NHIM�.10 The stable and un-
stable manifolds of the NHIM act as separatrices between

reactive and nonreactive trajectories that funnel enclosed tra-
jectories towards and away from the TS. �An analogous
mechanism had previously been described in system with
two degrees of freedom.11–13� These manifolds encode a de-
tailed microscopic description of the reaction dynamics.

On a different front, the development of laser
technology14–17 in the past decades has led to laser pulses
whose duration is on the time scale of the molecular motion,
that is, pico- or femtosecond. It is thus becoming feasible to
manipulate and control chemical reactions on a microscopic
level through the application of judiciously shaped laser
pulses �see Refs. 14, 15, and 18 for reviews�. However, to
determine the required pulse shapes one needs to understand
the dynamics of laser-driven reactions in microscopic detail.
The geometric TS theory has the potential to provide such
knowledge if it can be generalized to problems with external
driving fields. This is the aim of the present paper.

Recent work by Bartsch et al.19–21 on TST for time-
dependent problems has addressed the inclusion of stochastic
time-dependent forces �due to solvents in liquid phase reac-
tions, for example�. Starting from the Langevin equation of
motion, they showed the existence of a “transition state tra-
jectory,” which stays in the vicinity of the barrier for all time.
The TS trajectory generalizes the saddle point that is of cen-
tral importance to autonomous TST to the time-dependenta�Electronic mail: s.kawai@usherbrooke.ca
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setting. Time-dependent invariant manifolds that separate re-
active from nonreactive trajectories in the known manner are
attached to the TS trajectory.

In this paper, we combine the concept of the TS trajec-
tory with the method of normal form �NF� expansions based
on Lie transformations22 which has been shown to be an
effective tool to calculate invariant manifolds in autonomous
systems1–9 �see also Refs. 23 and 24 for a quantum version of
Lie transformations�. Preceding work on time-dependent
normal form �TDNF� in the field of celestial mechanics25

assumes the external driving to be periodic or quasiperiodic,
which precludes an application of the algorithm to short laser
pulses. In contrast, the TDNF scheme developed here can be
applied to any form of time dependence of the external force.
We will compare the result of the TDNF with those of a
harmonic approximation and of time-independent NF theory
and thereby demonstrate that both the nonlinearity and the
time dependence are equally important and can be correctly
handled by TDNF theory.

Section II presents the technical details of the TDNF
scheme. The basic finding there is that, although resonances
between the external field and the bath modes do not allow
reducing the dynamics to an integrable NF, it is possible to
separate the reactive mode from all other modes even under
the influence of the laser field. This separation yields a con-
stant of the motion, viz., the action variable associated with
the reactive mode. The sign of this action variable distin-
guishes reactive from nonreactive trajectories and thus also
characterizes the separatrices between them.

In Sec. III, an application of the TDNF to a simple two-
degree of freedom model is given: a Hénon-Heiles potential
with a Gaussian interaction with the external field. That
potential,26 whose contour plot is shown in Fig. 1, has one
minimum at the origin and three saddle points that separate a
central region from three asymptotic regions. We regard the
asymptotic regions as depicting the reactant channel and two
different product channels, the central region as correspond-
ing to an intermediate activated complex. The system then
serves as a simple model for multichannel reactions such as

R1 + R2 � M*�→P1 + P2

→P1� + P2�,
� �1�

where R1 and R2 denote reactant molecules that collide to
form a metastable complex M*, which then dissociates either
into one of the two product channels P1+ P2 or P1�+ P2�, or
back into the reactant channel R1+R2.

The laser field influences both the formation and the de-
cay of the intermediate complex. Some of the trajectories
starting in the reactant region of phase space are simply re-
flected by the first barrier �marked by SR in Fig. 1� and never
form the complex, whereas others surmount the barrier and
reach the intermediate region. Once the complex has been
formed, it can decay across any of the three barriers
�SR ,SA ,SB� that lead into the three channels. The outcome of
the reaction is determined by the channel chosen. It is there-
fore important to specify the conditions for a trajectory to
enter into the intermediate region in the first place and then
to react into a given channel. We will construct time-
dependent normal forms around all three saddle points and
show that the invariant manifolds extracted in this way pro-
vide such conditions that allow one to predict the ultimate
fate of a trajectory a priori, without having to carry out a
numerical simulation.

II. THEORY

In this section, we develop a scheme to calculate the
phase space structures in the vicinity of a saddle point for
laser-driven reactions. The algorithm, which is based on
time-dependent normal form theory, consists of three main
steps that are illustrated schematically in Fig. 2: �a� diago-
nalization of the linearized time-independent dynamics, �b� a
time-dependent shift of origin that eliminates the time depen-
dence to lowest order, and �c� a sequence of nonlinear coor-
dinate transformations that reduces the dynamics to a suit-
ably chosen normal form. As a result, we will identify a
reactive mode that can be separated from all other modes
even under the influence of the external field. Although reso-
nances between the bath modes and the external field prevent
the reduction of the Hamiltonian to an integrable normal
form, it is possible to construct one constant of the motion,
viz., the action variable of the reactive mode. It defines phase
space structures such as separatrices between reactive and
nonreactive trajectories.

We start with a general Hamiltonian of the form

FIG. 1. �Color online� Contour plot of the potential energy of Hénon-Heiles
system. Contours are spaced by 0.03. The saddle points SA, SB, and SR

separate a central region from three different asymptotic channels. The line
in the reactant channel indicates the dividing surface used to sample initial
conditions.

FIG. 2. �Color online� The main steps of the time-dependent normal form
method �schematic�. �a� Diagonalization of the linearized autonomous dy-
namics, �Qr ,Pr�� �Qc ,Pc�. �b� Time-dependent shift of the origin to the
transition state trajectory �Qc ,Pc�� �qc ,pc�. �c� Nonlinear normal form
transformation �qc ,pc�� �q̄c , p̄c�.
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Htot�q,p,t� = Hsys�q,p� + Hex�q,p,t� , �2�

where Hsys is the Hamiltonian of the isolated system, and Hex

describes the interaction with the time-dependent external
field.

We assume that q=p=0 is a rank-1 saddle point of Hsys,
i.e., it denotes the location of an energy barrier. We expand
the Hamiltonian in Taylor series as follows:

Hsys�q,p� = �
�=2

�

�
���j�+k��=�

�jkq1
j1
¯ qn

jnp1
k1
¯ pn

kn, �3�

Hex�q,p,t� = �
�=1

�

�
���j�+k��=�

�jk�t�q1
j1
¯ qn

jnp1
k1
¯ pn

kn, �4�

where the exponents j� and k� ��=1, . . . ,n� are non-negative
integers and �jk and �jk�t� are expansion coefficients. The
expansion of Hsys begins with �=2 because q=p=0 is an
equilibrium point. The expansion of Hex starts with �=1
since terms with �=0 have no influence on the motion and
can therefore be neglected. For example, a dipole interaction
with an external electric field leads to �jk�t�=0 for k�0 and
�j0�t�=E�t� ·�j, where E�t� is the electric field and

��q� = �
�=1

�

�
��j�=�

�jq1
j1
¯ qn

jn �5�

is the dipole moment of the system as a function of the
nuclear coordinates q.

Since the NF theory is a perturbative approach, we in-
troduce formally a perturbation parameter � that will be set
equal to 1 in the end. We scale according to

q � �q, p � �p, �jk�t� � ��jk�t�, Htot � �−2Htot.

�6�

After the scaling, Hsys and Hex can be expressed as a power
series in �:

Hsys�q,p� = �
�=0

�

��H�
sys�q,p� , �7�

Hex�q,p,t� = �
�=0

�

��H�
ex�q,p,t� , �8�

where

H�
sys�q,p� =

def

�
���j�+k��=�+2

�jkq1
j1
¯ qn

jnp1
k1
¯ pn

kn, �9�

H�
�ex��q,p,t� =

def

�
���j�+k��=�+1

�jk�t�q1
j1
¯ qn

jnp1
k1
¯ pn

kn. �10�

The total Hamiltonian reads

Htot�q,p,t� = Hsys�q,p� + Hex�q,p,t�

= �
�=0

�

���H�
sys�q,p� + H�

ex�q,p,t�	

= H0 + �
�=1

�

���H�
sys�q,p� + H�

ex�q,p,t�	 . �11�

As a consequence of the scaling prescription �6�, its leading-
order term

H0�q,p,t� =
def

H0
sys + H0

ex

= �
���j�+k��=2

�jkq1
j1
¯ qn

jnp1
k1
¯ pn

kn

+ �
���j�+k��=1

�jk�t�q1
j1
¯ qn

jnp1
k1
¯ pn

kn �12�

has an autonomous part of degree 2 in coordinates and mo-
menta and a time-dependent part of degree 1. The associated
equations of motion are therefore linear in p and q and have
time-dependent driving terms independent of coordinates
and momenta. For this situation, although in a non-
Hamiltonian setting, a time-dependent transition state theory
based on an exact solution of the equations of motion was
developed in Refs. 19–21. Our treatment of the leading-order
Hamiltonian in Secs. II A and II B will be closely patterned
after this earlier approach. On the other hand, anharmonici-
ties of the system Hamiltonian and position-dependent cou-
plings to the external fields, both of which cannot be handled
within the framework of Refs. 19–21, are relegated to
higher-order terms in Eq. �11�. A scheme for the perturbative
treatment of these terms will be introduced in Sec. II C. It
represents a considerable generalization of our earlier
method and is the central result of the present paper.

A. Diagonalization of the linearized time-independent
dynamics

As a first step of the normal form procedure, we diago-
nalize the autonomous part of the leading-order Hamiltonian
H0 in the standard way. We introduce normal mode coordi-
nates through the linear transformation

Q�
r = C1

���q1 + C2
���q2 + ¯ + Cn

���qn + Cn+1
��� p1 + ¯

+ C2N
���pn, �13�

p�
r = C1

�n+��q1 + C2
�n+��q2 + ¯ + Cn

�n+��qn + Cn+1
�n+��p1 + ¯

+ C2N
�n+��pn, �14�

with appropriate coefficients Cj
��� such that H0 takes the form

H0 =
�

2
�P1

r2 − Q1
r2� + �

�=2

n
��

2
�P�

r2 + Q�
r2� − �

�=1

n

��
r�t�Q�

r

− �
�=1

n

	�
r�t�P�

r , �15�

where ��
r�t� and 	�

r�t� ��=1, . . . ,n� can be calculated from
�jk�t� by substituting Eqs. �13� and �14� into Eq. �12�. We
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further introduce the coordinates �see Fig. 2�a� for the reac-
tive mode�

Q1
c =

defQ1
r + P1

r

21/2 , P1
c =

def P1
r − Q1

r

21/2 , �16�

Q�
c =

defQ�
r − iP�

r

21/2 , P�
c =

def P�
r − iQ�

r

21/2 �� = 2, . . . ,n� , �17�

which are illustrated in Fig. 2�a� for the reactive mode. For
the bath modes, Q�

c and P�
c take complex values, whereas Q�

r

and P�
r are real. This is indicated by the superscripts r and c.

In these coordinates, H0 becomes

H0 = �Q1
cP1

c + �
�=2

n

i��Q�
cP�

c − �
�=1

n

��
c�t�Q�

c − �
�=1

n

	�
c�t�P�

c ,

�18�

where ��
c�t�, 	�

c�t� ��=1, . . . ,n� are obtained by substituting
Eqs. �16� and �17� into Eq. �15�.

B. Shift to a time-dependent origin

To eliminate the time dependence from H0, we perform a
time-dependent shift of the origin, as suggested in Refs.
19–21 and illustrated in Fig. 2�b�:

q�
c =

def

Q�
c − Q�

‡�t� , �19�

p�
c =

def

P�
c − P�

‡�t� �� = 1, . . . ,n� . �20�

The shifts Q�
‡ and P�

‡ are given by

Q1
‡ = − S��,	1

c� , �21�

P1
‡ = S�− �,�1

c� , �22�

Q�
‡ = − S�i��,	�

c� , �23�

P�
‡ = S�− i��,��

c� �� = 2, . . . ,n� , �24�

where the symbol S�· , · � is defined as follows. For a function
f�t� with the Fourier transform

f̂��� =
1

�2
�1/2

−�

+�

f�t�exp�− i�t�dt , �25�

f�t� =
1

�2
�1/2

−�

+�

f̂���exp�i�t�d� , �26�

and for a complex number �,

S��, f��t� =
def 1

�2
�1/2

−�

+� f̂���
− � + i�

exp�i�t�d� . �27�

If Re ��0, the S-functional can be written explicitly as
in Ref. 20:

S��, f��t� = �− 

t

�

f���exp���t − ���d� : Re �
0

+ 

−�

t

f���exp���t − ���d� : Re � � 0.�
�28�

Therefore, the components Q1
‡�t� and P1

‡�t� correspond to the
TS trajectory of Refs. 19–21, which was defined as a particu-
lar solution of the lowest-order equations of motion that re-
mains in the vicinity of the barrier for all times. If f�t� de-
scribes a short pulse, i.e., f�t�→0 as t→ ±�, it is clear from
Eq. �28� that S�� , f��t�→0 as t→ ±�, as is required for the
components of the TS trajectory.

If, however, �= i�0 is purely imaginary, the integral in
Eq. �27� is ill defined because the integrand has a pole on the
integration path. This divergence must be regularized to yield
a suitable expression for the TS trajectory. An obvious way
to do this is to add an infinitesimal real part to the eigenval-
ues, i.e., to replace the S functional in Eqs. �23� and �24� by

S±�i�0, f��t� =
def

S�i�0 ± �, f�, � 
 0. �29�

These regularizations are well defined if the Fourier trans-

form f̂��� is regular at �=�0. They differ in the boundary
conditions they satisfy: By Eq. �28�, S+�i�0 , f��t� tends to
zero as t→ +�. As t→−�,

S+�i�0, f��t� → − exp�i�0t�

−�

�

f���exp�− i�0��

= − �2
�1/2 f̂��0�exp�i�0t� . �30�

Conversely, S−�i�0 , f��t�→0 as t→−�, and S−�i�0 , f��t�
→ �2
�1/2 f̂��0�exp�i�0t� as t→ +�. Both regularizations re-
main bounded for all times and are therefore equally suitable
as components of the TS trajectory. We thus find that in the
presence of purely imaginary eigenvalues the TS trajectory is
no longer uniquely defined. Dynamically speaking, imagi-
nary eigenvalues correspond to undamped oscillations. The
motion in these modes always remains bounded for all times,
so that the requirement that the TS trajectory must never
leave the vicinity of the barrier does not single out a specific
trajectory. In the bath modes, we are therefore free to pick an
arbitrary trajectory and designate it as the TS trajectory. By
convention, we will choose the symmetrized version,

S�i�0, f��t� =
def1

2
�S+�i�0, f��t� + S−�i�0, f��t�� , �31�

which corresponds to replacing the integral in Eq. �27� by its
principal value. With this definition, Eqs. �21�–�24� specify a
TS trajectory if the Fourier spectra of the driving forces ��

c�t�
and 	�

c�t� are smooth, which is true for realistic laser pulses.
For functions f�t�, g�t� and constants a, b, �, �, the

following properties of the S symbol can readily be shown:

S��,af + bg� = aS��, f� + bS��,g� , �32�


 d

dt
− ��S��, f� = f , �33�
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S��,S��, f�� = S��,S��, f�� =
1

� − �
�S��, f� − S��, f�	 ,

�34�

S��,1� = −
1

�
, �35�

If 

−�

+�

f�t�dt = 0 then 

−�

+�

S��, f��t�dt = 0. �36�

If f�t� is proportional to an electric field strength, as for the

dipole coupling �5�, the hypothesis of Eq. �36�, i.e., f̂�0�=0,
is always satisfied as a consequence of Maxwell’s
equations.16

The shift �19� and �20� to the TS trajectory as a time-
dependent origin is described by the generating function

F�qc,Pc,t� = �
�=1

n

�q�
cP�

c − q�
cP�

‡�t� + Q�
‡�t�P�

c	 . �37�

The new Hamiltonian H̃�qc ,pc , t� is given by

H̃�qc,pc,t� = Htot −
�F

�t
�38�

=H0 −
�F

�t
+ �

�=1

�

���H�
sys + H�

ex	 . �39�

A simple calculation using Eq. �33� shows that

H0 −
�F

�t
= �q1

cp1
c − �1�t�Q1

‡�t� + �
�=2

n

�i��q�
cp�

c

+ ���t�Q�
‡�t�	 . �40�

Terms independent of p�
c and q�

c have no influence on the
equations of motion and can be omitted. We then obtain a
Hamiltonian �that will not be confused with the original
Hamiltonian �2��

H�qc,pc,t� =
def

H0
�0��qc,pc� + �

�=1

�

��H��qc,pc,t� , �41�

where the harmonic part

H0
�0��qc,pc� =

def

�q1
cp1

c + �
�=2

n

i��q�
cp�

c �42�

is formally the same as the autonomous part of the leading-
order Hamiltonian H0 in Eq. �19� and the higher-order terms
H��qc ,pc , t�=H�

sys+H�
ex are the same as in Eq. �11� but re-

written in the new coordinates.
The dynamics of the harmonic part H0

�0� can be solved
exactly. It conserves the action variables I1=q1

cp1
c, and I�

= iq�
cp�

c ��=2, . . . ,n�. In the next section, we will incorporate
the effect of the anharmonic terms H� ��=1,2 , . . . � by re-
garding them as perturbations to the integrable system H0

�0�.

C. Time-dependent normal form theory

This section describes a final nonlinear canonical trans-
formation �qc ,pc�� �q̄c , p̄c� illustrated in Fig. 2�c�. This
transformation will be chosen such as to decouple the reac-
tion coordinate from the bath modes. To this end, we will use
time-dependent Lie transformations22 in the formulation of
Dragt and Finn.27 First we extend the phase space from
�qc ,pc� to �qc ,� ,pc , P�� with Hamiltonian

K�qc,�,pc,P�� =
def

H�qc,pc,�� + P�, �43�

where the canonical coordinate � takes the same value as t
and P� is its conjugate momentum. The Taylor expansion of
K is given by

K�qc,�,pc,P�� = K0�qc,�,pc,P�� + �
�=1

�

��K��qc,�,pc� , �44�

where

K0�qc,�,pc,P�� =
def

H0
�0��qc,pc,�� + P�

= �q1
cp1

c + �
�=2

n

i��q�
cp�

c + P�, �45�

K��qc,�,pc� =
def

H��qc,pc,�� for � � 1. �46�

We will now construct a canonical transformation
�qc ,� ,pc , P��� �q̄c ,� , p̄c , P�� that leaves the time coordinate
� unchanged and that decouples the reactive mode from the
bath modes to an arbitrarily high order N of perturbation
theory. It will be given by a sequence of Lie transformations:

q̄�
c = exp�− �F1�exp�− �2F2� ¯ exp�− �NFN�q�

c , �47�

p̄�
c = exp�− �F1�exp�− �2F2� ¯ exp�− �NFN�p�

c , �48�

where

F� = �· , f�	 �49�

is the operation of Poisson bracket with a function f� that
will be specified below. The Hamiltonian K is transformed
into

K̄ = exp��NFN� ¯ exp��2F2�exp��F1�K . �50�

It is now our goal to find functions f� that achieve the desired

decoupling in K̄.
If we define a sequence of partially transformed Hamil-

tonians K̄���=��=0
� ��K̄�

��� by K̄�0�=K and

K̄��� = exp���F��K̄��−1�

= exp���F�� ¯ exp��2F2�exp��F1�K , �51�

we find the recursion formulas

� � �: K̄�
��� = K̄�

��−1�, �52�

� = �: K̄�
��� = K̄�

��−1� + F�K̄0
�0�, �53�
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� 
 �: K̄�
��� = K̄�

��−1� + �
s=1

�
�F��s

s!
K̄�−s�

��−1�. �54�

Because the term of the order � is unchanged for �
�, in

the final Hamiltonian K̄= K̄�N� it reads

K̄� = K̄�
�N� = K̄�

�N−1� = ¯ = K̄�
��� = K̄�

��−1� + F�K̄0
�0�. �55�

Thus, f� should be chosen so that the decoupling of the re-
active mode is achieved in the term K�

���.
In the present case,

K̄�
��−1��qc,pc� = �

j,k
hjk

�������q̄1
c� j1�q̄2

c� j2
¯ �q̄n

c� jn

��p̄1
c�k1�p̄2

c�k2
¯ �p̄n

c�kn �56�

is a polynomial, where hjk
������ are coefficients that depend on

�. We can also express f� as a polynomial

f� = �
j,k

w�,jk����q̄1
c� j1�q̄2

c� j2
¯ �q̄n

c� jn�p̄1
c�k1�p̄2

c�k2
¯ �p̄n

c�kn,

�57�

containing the same monomials jk that occur in Eq. �56�.
With K̄0

�0� given by Eq. �45�, Eq. �55� yields

K̄�
�N� = �

j,k
�hjk

������ − 
 d

d�
− �jk�w�,jk�

��q̄1
c� j1�q̄2

c� j2
¯ �q̄n

c� jn�p̄1
c�k1�p̄2

c�k2
¯ �p̄n

c�kn, �58�

where

�jk =
def

��k1 − j1� + i�
�=2

n

���k� − j�� . �59�

Thus, by setting

w�,jk = S��jk,hjk
���� , �60�

we can eliminate the term jk from K̄��� �see Eq. �33��. If hjk
���

does not depend on �, we obtain

w�,jk =
hjk

���

�jk
, �61�

which is well known in the theory of time-independent
NF.1–3

In the calculation of the coefficients in Eq. �60�, once
again one has to pay attention to convergence. If �jk is purely
imaginary, the integrand in the definition �27� has a singular-
ity on the real axis. It was noted in Sec. II B that taking the
principal value circumvents this problem for the calculation
of the TS trajectory because the Fourier transform of the
laser pulse is regular. However, the Fourier transform of the
coefficients hjk

��� may be singular there because through Eqs.
�19� and �20� these coefficients depend on the TS trajectory,
the Fourier transform of which has a pole. Thus, the S func-
tional in Eq. �60� may diverge for purely imaginary �jk. This
effect can be interpreted as due to a resonance between a
bath mode and the laser pulse. It prevents us from eliminat-

ing the resonant term from the Hamiltonian and thereby from
constructing a coordinate system in which all degrees of
freedom decouple.

A resonance that makes �jk purely imaginary can only
occur if j1=k1. We propose to retain all such terms in the
normal form Hamiltonian and to eliminate all terms with j1

�k1. Such a partial normalization avoids resonances, which
makes it a powerful tool in many applications �see, e.g.,
Refs. 1, 8, 28, and 29�.

The transformation functions f� in �57� are independent
of P�, so that the time coordinate

�̄ = exp�− �F1�exp�− �2F2� ¯ exp�− �NFN�� = � �62�

is unchanged under the transformation, as desired. In addi-
tion, because of the special form of K�

��� in Eqs. �45� and
�46�, F�K�

�0�= �K�
�0� , f�	 is independent of P� for all � and �.

Therefore, the normal form Hamiltonian K̄ depends on P�

only through its lowest-order term K̄0=K0. We can thus re-
turn to a time-dependent formulation in the nonextended
phase space with the normal form Hamiltonian

H̄�q̄c, p̄c,t� = K̄�q̄c,t, p̄c, P̄�� − P̄�

= H0
�0��q̄c, p̄c� + �

�=1

�

��K̄��q̄c,t, p̄c� , �63�

where we write t again instead of the time coordinate �.
Because the normal form Hamiltonian contains only

terms with j1=k1, it takes the form

H̄�q̄c, p̄c,t� = �q̄1
cp̄1

c + �
�=2

n

i��q̄�
cp̄�

c + �
j,k

ājk
����t�

��q̄1
cp̄1

c� j1�q̄2
c� j2

¯ �q̄n
c� jn�p̄2

c�k2
¯ �p̄n

c�kn, �64�

where it is understood that terms of order larger than N,
which are not in normal form, should be dropped. For the

Hamiltonian �64�, the action of the reactive mode Ī1 =
def

q̄1
cp̄1

c is
conserved. This reflects the desired separation of the reactive
mode from the bath modes. When projected onto the �q̄1

c , p̄1
c�

plane, trajectories follow a hyperbola, as depicted in Fig. 3.

Trajectories with Ī1
0 are �forward or backward� reactive,

those with Ī1�0 are not. The separatrices between reactive

and nonreactive trajectories are thus given by Ī1=0.

FIG. 3. �Color online� Phase space structures projected onto the NF reactive

mode �schematic�. The action Ī1= q̄1
cp̄1

c is conserved and restricts trajectories
to the hyperbolas shown in black.
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Through the normal form coordinates, geometrical ob-
jects such as the NHIM M, its stable manifold Ws and un-
stable manifold Wu, and the transition state dividing surface
T can be defined in a way analogous to that of Refs. 1 and 2
�see Fig. 3�:

M=
def

��q̄c, p̄c,t���q̄c, p̄c,t� � �, q̄1
c = p̄1

c = 0	 , �65�

Ws =
def

��q̄c, p̄c,t���q̄c, p̄c,t� � �, q̄1
c = 0	 , �66�

Wu =
def

��q̄c, p̄c,t���q̄c, p̄c,t� � �, p̄1
c = 0	 , �67�

T=
def��q̄c, p̄c,t���q̄c, p̄c,t� � �, q̄1

r =
q̄1

c − p̄1
c

21/2 = 0� . �68�

These definitions are valid locally within the region of con-
vergence � of the NF expansion. They can be put in the
original coordinates by inverting the nonlinear transforma-
tion �Eqs. �47� and �48��, the shift �Eqs. �19� and �20��, and
then the linear transformations �Eqs. �13�, �14�, �16�, and
�17��. The stable and unstable manifolds can be continued
numerically beyond the region � as in the autonomous
setting.4,5 The dimensions of M, Ws, Wu, and T are 2n−1,
2n, 2n, and 2n, respectively, in the �2n+1�-dimensional
phase space �including time�. These dimensions are in-
creased by 2 compared to the time-independent case because
the manifolds are time dependent and are not confined to an
energy shell.

The normal form procedure requires the truncation of the
Hamiltonian to a finite expansion order N. It is therefore
important to monitor the error caused by the truncation and
the convergence of the expansion with increasing N. In Ref.
30, we suggested to use the energy error for this purpose in
an autonomous system. Here we will use an alternative cri-
terion that is more directly related to the equations of motion,
that is, the error of Hamiltonian vector field. We monitor the
Euclidean norm of the difference of the vector fields calcu-
lated by the original Hamiltonian and the TDNF Hamil-
tonian:

�v =
def��

�=1

n 
 d

dt
q̄�

c�qc�t�,pc�t�,t� −
�H̄

�p̄�
c�2

+ �
�=1

n 
 d

dt
p̄�

c�qc�t�,pc�t�,t� +
�H̄

�q̄�
c�2�1/2

. �69�

Here, q̄�
c�qc�t� ,pc�t� , t� and p̄�

c�qc�t� ,pc�t� , t� mean q̄�
c and p̄�

c

as function of the original coordinates �qc ,pc�, with qc�t� and
pc�t� calculated by trajectory simulation with the original

Hamiltonian. The Hamiltonian vector field ��H̄ /�p̄�
c ,�H̄ /�q̄�

c�
is calculated by the transformed Hamiltonian H̄. If �qc ,pc� is
in the convergence range, and if the NF expansion is taken
up to the infinite order, then �v becomes zero. Thus, we use
a decrease in the value of �v as a numerical criterion for
convergence. To judge whether the error �v is small, we
compare it with the norm v of the Hamiltonian vector field:

v =
def��

�=1

n 
 �H̄

�p̄�
c�2

+ �
�=1

n 
 �H̄

�q̄�
c�2�1/2

. �70�

III. THE DRIVEN HÉNON-HEILES SYSTEM

In this section we will apply the theory developed in the
preceding section to an externally driven Hénon-Heiles sys-
tem, which serves as a simple model for a reaction with
several open channels. Through numerical trajectory calcula-
tions we find that the set of trajectories that lead into any
given channel possesses a structure reminiscent of the “reac-
tive islands” known in autonomous systems.4,6,11–13 The
time-dependent invariant manifolds introduced here form the
boundaries of the reactive islands and thus provide a geomet-
ric interpretation of the island structure. Time-dependent nor-
mal form theory will prove to be an effective tool for their
calculation.

The Hénon-Heiles potential26 has one minimum at the
origin and three saddle points SR= �31/2 /2 ,−1/2�,
SA= �−31/2 /2 ,−1/2�, and SB= �0,1�. They separate a central
region from three asymptotic regions �see Fig. 1� that we
interpret as defining a reactant channel and two product
channels A and B. The central region corresponds to an in-
termediate activated complex. As pointed out in Sec. I, this
model captures salient features of multichannel chemical re-
actions. In the absence of external driving, the three saddles
are equivalent. Their barrier height relative to the origin is
1 /6. Their normal mode frequencies are, in the notation of
Eq. �18�, �=1 for the reactive mode and �2=31/2 for the bath
mode.

In Ref. 31, it was found that the interaction between
reacting molecules and a laser field is much larger for the
activated complex than for the isolated molecules. We as-
sume this result to be typical of many molecular systems.
This finding motivates us to model the coupling of the mo-
lecular system to the laser field by a Gaussian that is peaked
at the origin. We are thus led to the Hamiltonian

H = 1
2 �px

2 + py
2� + 1

2 �x2 + y2� + x2y − 1
3 y3

+ E1�t�exp�− �x2 − �y2� . �71�

Here, x and y are position coordinates and px and py are
conjugate momenta. E1�t� denotes the electric field, and �
and � are parameters that introduce an asymmetry among the
asymptotic regions. Since this is a model calculation, we use
a unit system in which the vibrational frequency at the origin
is scaled to 1. We use �=2 and �=4 in what follows. The
laser-molecule interaction is proportional to E1�t�, thus rep-
resenting a dipole interaction. Inclusion of the polarizability
would result in terms proportional to the square of E1�t�.31

We use the driving field E1�t� shown in Fig. 4 and given
by32

E1�t� = −
�

�t
A�t� , �72�
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A�t� = �− A0 cos2
 �t

2N
�sin��t + �� 
for �t� �

N


�
�

0 �otherwise� .
�
�73�

The parameters � and A0 are the laser frequency and the
amplitude, respectively. The phase � is called the carrier-
envelope phase.14,32 The parameter N is the number of cycles
contained under the envelope. This pulse satisfies the zero-
area condition �−�

+�E1�t�dt=0. We use �=3, A0�=0.1, N=4,
and �=
, which we found to exhibit the effect of the laser
field most clearly. Thus, the laser frequency � is three times
the “molecular” frequency �0=1 of small vibrations around
the origin. With this choice of parameters, the external field
is zero for �t�
4.189.

We sample initial conditions for our numerical trajectory
study on the surface defined by

31/2x − y = 3, �74�

at the initial time t0=−4.2, just before the onset of the pulse,
and with the initial energy E0=0.3. �Note that the energy is
well defined before the pulse starts.� These initial conditions
can be specified by the parameters

q =
defx + 31/2y

2
, �75�

p =
def px + 31/2py

2
, �76�

which coincide with the canonical normal mode coordinates
of the bath mode at SR.

An example of the unit conversion from our scaled units
to conventional units can be given as follows: One of length,
mass, and time in our units may correspond to 1.6 a.u.
�=0.84 Å�, 1837 a.u. �=1.7�10−27 kg�, and 220 a.u.
�=5.3 fs�, near the time scale of proton motion ��7 fs�, re-
spectively. This makes the unit of energy 0.096 a.u.
�=60 kcal/mol�. Thus the barrier height �1/6 in our scaled
units� becomes 0.016 a.u.=10 kcal/mol, which is in the right
order of the realistic systems.33,34 The harmonic frequency at
the center becomes 220−1=0.0046 a.u., corresponding to

1000 cm−1. Thus, our initial energy of 0.3, which corre-
sponds to 0.029 a.u. �=18 kcal/mol=6300 cm−1�, is larger
than the zero point energy of 500 cm−1.

As described above, the outcome of a reaction is deter-
mined by the channel in which a trajectory finally leaves the
interaction region. Figure 5 shows the final channel as a
function of the initial condition �q , p�. In the absence of the
external field, as shown in Fig. 5�a�, there is a symmetry
between the channels A and B: The reflection �q , p�� �−q ,
−p� interchanges their roles, as should be expected from the
symmetry of the Hénon-Heiles system. The time-dependent
driving, which is anisotropic because ��� in Eq. �71�,
breaks this symmetry, as can clearly be seen in Fig. 5�b�.
There is an asymmetric shift of the phase space regions that
lead into different final channels, as can most clearly be seen
in the regions around �q , p�= �±0.22,0�. In addition, the
branching ratio, that is, the total production of B divided by
that of A, is increased to 1.075. This is precisely the effect
that needs to be understood in detail if one wishes to control
the outcome of a reaction through a suitably tailored laser
pulse.

The most conspicuous feature of Fig. 5 is the existence
of several different regions, or “islands,” of initial conditions
that lead into the same final channel and that intertwine with
the islands of the other channels in a complicated manner. As

FIG. 4. The electric field �72� used to drive the Hénon-Heiles system.

FIG. 5. �Color online� Initial conditions that result in product A, product B,
or a return into the reactant channel are shown by medium �red�, dark �blue�,
and light �gray� colors. �a� Without an external field. �b� With the driving
field �72�. The external field distorts the pattern of islands and breaks the
symmetry between channels A and B.
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Fig. 6 shows, trajectories that reach the same channel from
different islands are qualitatively different. In the example of
Fig. 6�a�, trajectory 2 differs from trajectory 1 by an addi-
tional oscillation in the x direction. This difference can be
detected by counting the crossings of the trajectory with the
line x=0 �where we count only crossings from positive to
negative x�. As can be seen in Fig. 6�b�, trajectories within
the same island have the same number of crossings with the
dividing line. However, the number of crossings does not
uniquely identify the island and therefore does not provide
an exhaustive characterization of the island structure. A simi-
lar classification can be carried out for trajectories that react
into channel B or return into the reactant channel, although
different dividing lines have to be chosen �see Fig. 7�. It is
shown in Figs. 6�c� and 6�d�. In the latter case, there is a
large peripheral region of trajectories that do not cross the
dividing line at all. These trajectories are reflected by the
barrier SR before they can enter into the intermediate region.

A more detailed understanding of the island structure in
Fig. 5 can be obtained by noting its similarity with the reac-
tive islands observed by De Leon et al.11–13 These authors
interpreted the reactive islands in a two-dimensional autono-
mous system as the imprints of invariant “cylindrical mani-
folds” that separate reactive from nonreactive trajectories
and that intertwine in a complicated manner as they follow

the intricacies of a homoclinic tangle. This picture was later
generalized to more than two degrees of freedom,1,4,6 where
the stable and unstable manifolds of the NHIM that were
described above play the role of the cylindrical manifolds
and show the same complicated behavior. While the theory
of Refs. 11–13 can immediately be applied to the time-
independent situation shown in Fig. 5�a�, previous ap-
proaches are not capable of handling the time-dependent case
of Fig. 5�b�. However, the time-dependent normal form
theory described here enables us to define and compute the
corresponding invariant manifolds even for the driven sys-
tem. We will show that these manifolds determine the struc-
ture of reactive islands in the same way as they do in the
autonomous setting.

We have constructed the time-dependent normal forms
around all three saddle points. The resulting expressions for
the NF Hamiltonians and the coordinate transformations are
available as supplemental material on EPAPS.35 Once a tra-
jectory comes close enough to a barrier for the corresponding

NF expansion to be valid, we evaluate the action Ī1 of the
reactive mode that determines the fate of the trajectory. If

Ī1
0, the trajectory will cross the barrier, and we assign the

value of Ī1 as the escape action of that trajectory. If Ī1�0, we
know that the trajectory will be deflected by the barrier.

Thus, trajectories with slightly negative Ī1 suffer an entirely

different fate from their neighbors with slightly positive Ī1:
They return into the intermediate region with its complicated
dynamics and later attempt to escape across a different bar-
rier. This sensitivity of trajectories close to the separatrix is
the cause of the intricate intertwining of the reactive islands.
The separatrices themselves are given by the zeros of the

escape action. Trajectories with Ī1=0 lie on the stable mani-
fold of the TS trajectory. They are trapped on the barrier and
will neither escape nor be reflected.

In practice, we calculate the coefficients in the TDNF
expansion for times t� �−20.48, +20.48�. To calculate the S
functionals appearing in TDNF, we use fast Fourier trans-
form algorithm36 by dividing the interval t� �−20.48,
+20.48� into 212 grid points. For the bath modes, we set
�=10−7 in Eq. �29� to calculate the principal value in Eq.

�31�. The normal form and the action Ī1 are evaluated once a

FIG. 6. �Color online� �a� Trajectories that reach the same final channel
from different islands show qualitatively different behaviors. They can be
distinguished by the number of crossings with the dividing line LA: x=0. �b�
Number of crossings with LA: x=0 for trajectories with final state A. Only
crossings from positive to negative x are counted. Trajectories within one
island share the same number of crossings. The two initial conditions used
to draw the trajectories in panel �a� are marked by crossed symbols. �c�
Number of crossings with LB: x−31/2y=0 for trajectories with final state B.
�d� Number of crossings with LR: 31/2x−y=0 for nonreactive trajectories.
Trajectories in the gray peripheral region that do not cross LR at all are
reflected by the reactant barrier and never enter the intermediate region.
�The dividing lines LA, LB, and LR are illustrated in Fig. 7�.

FIG. 7. �Color online� The dividing lines LA: x=0, LB: x−31/2y=0, and LR:
31/2x−y=0 used to characterize the island structure.
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trajectory comes so close to a saddle point that the real nor-
mal mode coordinate satisfies �q1

r ��	, where we choose the
threshold 	=0.2 for SR and 	=0.12 for SA and SB. The re-
sults of the calculation do not depend noticeably on any of
these numerical parameters. They do depend on the order N
to which the normal form expansion is carried out, and it will
be crucial to monitor the convergence of the results with
increasing N.

The quality of the TDNF expansion can be monitored
locally through the error �Eq. �69�� of the Hamiltonian vector
field. It is evaluated at the same phase space point and at the

same time as the action Ī1. To obtain an overall error esti-
mate, we average over all trajectories that lead to escape
across a given saddle. We compare the average error ��v� to
the average of the norm �Eq. �70�� of the Hamiltonian vector
field itself, which is evaluated at the same points. Figure 8
shows the relative error ��v� / �v� for each saddle point and
for each TDNF order. The zeroth order corresponds to the
harmonic approximation described in Secs. II A and II B.
For all the three saddle points, the error decreases as the NF
order increases and becomes about 1% of the norm of the
vector field for the fourth order. Thus, we can conclude that
the TDNF is a good approximation for this system.

The time-dependent invariant manifolds describe both
steps of the reaction, i.e., both the formation and the decay of
the activated complex. To study the formation step, we cal-

culate the reactive-mode action Ī1 of trajectories that ap-
proach the reactant barrier from the reactant side. For our
sample of trajectories, the results are shown in Fig. 9. There
is in the space of initial conditions an island of positive ac-
tion where trajectories enter the intermediate region. It is
surrounded by a region of negative action whose trajectories

are repelled by the barrier. The line Ī1=0 forms the separatrix
between entering and nonentering trajectories. In all cases,
the numerical simulations confirm that the value of the action
predicts the fate of a trajectory correctly.

A much more complicated picture is obtained on escape,
after the trajectories have taken part in the complex internal
dynamics of the activated complex. As described above, we
assign a final channel and an escape action to a trajectory
once it approaches one of the barriers with a positive action
in the reactive mode. The actions obtained in this way are
shown in Fig. 10. They take positive values within the reac-

tive islands and decrease to zero as the border of an island is
approached. Since the invariant manifolds of the TS trajec-

tories on the saddles are given by Ī1=0, this observation
confirms that the borders of the reactive island are formed by
these stable manifolds.

In order to assess the validity of the normal-form predic-
tions more accurately, we focus on one of the major reactive
islands. Figure 11 shows the boundary of the island around
�q , p�= �−0.22,0� that was obtained numerically and com-
pares it to the results of normal form expansions of various
orders. The normal-form results converge toward the exact
island boundaries with increasing N and practically coincide
with them for N=4. This confirms the validity of the normal
form expansion. Nevertheless, the harmonic approximation
differs significantly from the correct results, which shows

FIG. 8. �Color online� Error in the Hamiltonian vector fields for NF calcu-
lation as a function of the NF order. Triangle, diamond, and square symbols
show the error for the NF at SR, SA, and SB, respectively. The decrease of the
error means convergence of the polynomical expansions in the NF
calculation.

FIG. 9. �Color online� Reactive-mode action Ī1 of trajectories first approach-

ing the reactant barrier SR. Trajectories with Ī1
0 will enter into the inter-

mediate region, those with Ī1�0 are reflected. The separatrix between the

entering and nonentering trajectories is given by Ī1=0. The outer solid curve
indicates the boundary of possible initial conditions at energy E0=0.3. Tra-
jectories within this region for which no action is given �white� do not come
close enough to the saddle for the normal form expansion to be valid.

FIG. 10. �Color online� Escape actions as a function of initial conditions,
computed from a fourth-order NF expansion. Red, trajectories escaping into
channel A; blue, trajectories escaping into B. The outer solid curve indicates
the boundary of possible initial conditions at energy E0=0.3. In order not to
overload the figure, we do not indicate the escape actions of returning tra-
jectories. The actions are positive in the interior of a reactive island and
decrease to zero as the border of the island is approached.
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that the nonlinearities that are incorporated through the
higher orders of the expansion have a strong influence on the
dynamics.

In addition, Fig. 11 shows the boundary of the island that
was obtained from a fourth-order autonomous normal form
expansion that neglects the time-dependent driving �in the
trajectory calculations, the time dependence was retained�.
Although this expansion order is large enough to take ac-
count of the nonlinearities, the boundary found in this calcu-
lation is wrong. Thus, the external driving has a noticeable
impact on the escape dynamics, and it can only be described
correctly if both the time dependence and the nonlinearities
are taken into account. The manifolds calculated here are
beyond the reach of earlier approaches that can only handle
either the nonlinearities or the time dependence.

A further observation can be adduced to support the
identification of the island boundaries with time-dependent
invariant manifolds: If this interpretation is correct, the
boundaries correspond to trajectories that get trapped on a
barrier top for all time. Thus, neighboring trajectories that
are close to a boundary should take a long time before they
escape. To verify this prediction, we study the section p=0
through the island shown in Fig. 11 and calculate the time at
which a trajectory crosses the TS dividing surface defined by
Eq. �68�. Figure 12 shows the escape time as well as the
escape action as a function of the initial coordinate q. The
plot confirms, once again, that the boundary of the island is
given by the zero of the reactive-mode action and that tra-
jectories that reach the barrier with negative action do not
escape. It also shows, as anticipated, that the escape time
grows to infinity as the boundary is approached. We can
therefore conclude that the boundaries of the reactive islands
are indeed formed by invariant manifolds, just as they are in
autonomous systems, and that time-dependent NF theory
provides an effective way of calculating them.

IV. CONCLUSION AND OUTLOOK

In summary, we have developed time-dependent transi-
tion state theory as a tool to investigate the dynamics of
reactive systems under the influence of external driving. We

showed how to define a TS trajectory as a generalization of
the saddle point in an autonomous system. Time-dependent
normal form theory then allows us to incorporate nonlineari-
ties. While resonances between the internal dynamics and the
external driving prevent the reduction to an integrable nor-
mal form, it is possible to define a reaction coordinate with
regular dynamics that separates from the other modes. The
action variable associated with the reactive mode defines
time-dependent invariant manifolds that act as separatrices
between reactive and nonreactive trajectories. In a space of
initial conditions, they give rise to reactive islands that are
entirely analogous to those found in autonomous systems.
Once these islands are known, the ultimate fate of a trajec-
tory can be predicted without a numerical simulation.

We demonstrated the efficacy of this computational
scheme by calculating the separatrices for a Hénon-Heiles
system with a dipole interaction, which serves as a simple
model of a reactive system with several open channels. In
this system, we find an intricate pattern of reactive islands
similar to that known from time-independent systems. This
pattern is accurately described and explained by the invariant
manifolds constructed through time-dependent normal form
theory. Although we discussed an example system with only
two degrees of freedom and dipole interaction, our method
can readily be applied to higher-dimensional systems and
higher nonlinear laser-molecule interactions.

It will be interesting and rewarding to study the effect of
field parameters such as the frequency, pulse duration, and
carrier-envelope phase on these separatrices. Such a study
will lead to valuable physical insight into why certain pulses
enhance a specific reaction and others do not. This may con-
stitute a first step towards controlling chemical reactions by
manipulating the location of the separatrices through tailored
laser fields.
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