15 research outputs found

    Photometric measurements of red blood cell aggregation: light transmission versus light reflectance

    No full text
    Red blood cell (RBC) aggregation is the reversible and regular clumping in the presence of certain macromolecules. This is a clinically important phenomenon, being significantly enhanced in the presence of acute phase reactants (e.g., fibrinogen). Both light reflection (LR) and light transmission (LT) from or through thin layers of RBC suspensions during the process of aggregation are accepted to reflect the time course of aggregation. It has been recognized that the time courses of LR and LT might be different from each other. We aim to compare the RBC aggregation measurements based on simultaneous recordings of LR and LT. The results indicate that LR during RBC aggregation is characterized by a faster time course compared to simultaneously recorded LT. This difference in time course of LR and LT is reflected in the calculated parameters reflecting the overall extent and kinetics of RBC aggregation. Additionally, the power of parameters calculated using LR and LT time courses in detecting a given difference in aggregation are significantly different from each other. These differences should be taken into account in selecting the appropriate calculated parameters for analyzing LR or LT time courses for the assessment of RBC aggregatio

    Effect of magnesium supplementation on blood rheology in NOS inhibition-induced hypertension model

    No full text
    This study investigated the effects of magnesium on blood rheological properties and blood pressure in nitric oxide synthase (NOS) inhibition-induced hypertension model. Hypertension was induced by oral administration of the nonselective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME, 25 mg/kg/day) for 6 weeks and systolic blood pressure was measured by the tail-cuff method. The groups receiving magnesium supplementation were fed with rat chow containing 0.8% magnesium oxide during the experiment. At the end of experiment, blood samples were obtained from abdominal aorta, using ether anesthesia. Plasma and erythrocyte magnesium levels were determined by the atomic absorption spectrometer. RBC deformability and aggregation were determined by rotational ektacytometry. Plasma fibrinogen concentration was evaluated by ELISA. Whole blood and plasma viscosities were determined by viscometer and intracellular free Ca++ level was measured by using spectroflurometric method. Blood pressure was elevated in hypertensive groups and suppressed by magnesium therapy. Plasma viscosity and RBC aggregation were found to be higher in hypertensive rats than control animals and these parameters significantly decreased in magnesium supplemented hypertensive animals. Other measurements were not different between experimental groups. These results confirm that blood pressure, plasma viscosity and RBC aggregation increased in NOS inhibition-induced hypertension model and oral magnesium supplementation improved these parameters

    Investigation of dose-dependent effects of berberine against renal ischemia/reperfusion injury in experimental diabetic rats

    No full text
    Background: Ischemia-reperfusion injury causes various severe morphological and functional changes in diabetic patients. To date, numerous antidiabetic and antioxidant agents have been used for treatment of the disease-related changes

    Comparison of three instruments for measuring red blood cell aggregation

    No full text
    The International Society for Clinical Hemorheology organized a workshop to compare three instruments for measuring RBC aggregation: LORCA, Myrenne Aggregometer and RheoScan-A. The Myrenne Aggregometer provides indices at stasis (M) and at low shear (M1), with four indices obtained with the LORCA and RheoScan-A: amplitude (AMP), half-time (T1/2), surface area (SA) above (LORCA) or below (RheoScan-A) the syllectogram, and the ratio (AI) of the area above (LORCA) or below (RheoScan-A) the syllectogram to total area (AI). Intra-assay reproducibility and biological variability were determined; also studied were RBC in diluted plasma and in 1% 500 kDa dextran, and 0.003% glutaradehyde (GA)-treated cells in plasma. All measurements were performed at 37 degrees C. Standardized difference values were used as a measure of power to detect differences. Salient results were: (1) intra-assay variations below 5% except for RheoScan-A AMP and SA; (2) biological variability greatest for T1/2 with other indices similar for the three devices; (3) all instruments detected progressive changes with plasma dilution; (4) the Myrenne and LORCA, but not the RheoScan-A, detected differences for cells in dextran; (5) GA-treatment significantly affected the LORCA (AMP, T1/2, SA, AI), the RheoScan-A (AMP, SA, AI) and the Myrenne M parameter. It is concluded that: (a) the LORCA, Myrenne and the RheoScan-A have acceptable precision and suitable power for detecting reduced aggregation due to plasma dilution; (b) greatly enhanced RBC aggregation may not be sensed by the RheoScan-A while the Myrenne M1 index may be insensitive to minor increases of cell rigidity; (c) future studies should define each instrument's useful range for detecting RBC aggregatio

    Comparison of three commercially available ektacytometers with different shearing geometries

    No full text
    In December 2008, the International Society for Clinical Hemorheology organized a workshop to evaluate and compare three ektacytometer instruments for measuring deformability of red blood cells (RBC): LORCA (Laser-assisted Optical Rotational Cell Analyzer, RR Mechatronics, Hoorn, The Netherlands), Rheodyn SSD (Myrenne GmbH, Roetgen, Germany) and RheoScan-D (RheoMeditech, Seoul, Korea). Intra-assay reproducibility and biological variation were determined using normal RBC, and cells with reduced deformability (i.e., 0.001-0.02% glutaradehyde (GA), 48 degrees C heat treatment) were employed as either the only RBC present or as a sub-population. Standardized difference values were used as measure of the power to detect differences between normal and treated cells. Salient results include: (1) All instruments had intra-assay variations below 5% for shear stress (SS)>1 Pa but a sharp increase was found for Rheodyn SSD and RheoScan-D at lower SS; (2) Biological variation was similar and markedly increased for SS <3-5 Pa; (3) All instruments detected GA-treated RBC with maximal power at 1-3 Pa, the presence of 10% or 40% GA-modified cells, and the effects of heat treatment. It is concluded that the LORCA, Rheodyn SSD and RheoScan-D all have acceptable precision and power for detecting reduced RBC deformability due to GA treatment or heat treatment, and that the SS range selected for the measurement of deformability is an important determinant of an instrument's powe
    corecore