473 research outputs found

    O(N) symmetry-breaking quantum quench: Topological defects versus quasiparticles

    Full text link
    We present an analytical derivation of the winding number counting topological defects created by an O(N) symmetry-breaking quantum quench in N spatial dimensions. Our approach is universal in the sense that we do not employ any approximations apart from the large-NN limit. The final result is nonperturbative in N, i.e., it cannot be obtained by %the usual an expansion in 1/N, and we obtain far less topological defects than quasiparticle excitations, in sharp distinction to previous, low-dimensional investigations.Comment: 6 pages of RevTex4-1, 1 figure; to be published in Physical Review

    Geometric Laws of Vortex Quantum Tunneling

    Full text link
    In the semiclassical domain the exponent of vortex quantum tunneling is dominated by a volume which is associated with the path the vortex line traces out during its escape from the metastable well. We explicitly show the influence of geometrical quantities on this volume by describing point vortex motion in the presence of an ellipse. It is argued that for the semiclassical description to hold the introduction of an additional geometric constraint, the distance of closest approach, is required. This constraint implies that the semiclassical description of vortex nucleation by tunneling at a boundary is in general not possible. Geometry dependence of the tunneling volume provides a means to verify experimental observation of vortex quantum tunneling in the superfluid Helium II.Comment: 4 pages, 2 figures, revised version to appear in Phys. Rev.

    Functionalized Ag nanoparticles with tunable optical properties for selective protein analysis

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We present a preparation procedure for small sized biocompatibly coated Ag nanoparticles with tunable surface plasmon resonances. The conditions were optimised with respect to the resonance Raman signal enhancement of heme proteins and to the preservation of the native protein structure.DFG, EXC 314, Unifying Concepts in Catalysi

    Riemannian geometry of irrotational vortex acoustics

    Full text link
    We consider acoustic propagation in an irrotational vortex, using the technical machinery of differential geometry to investigate the ``acoustic geometry'' that is probed by the sound waves. The acoustic space-time curvature of a constant circulation hydrodynamical vortex leads to deflection of phonons at appreciable distances from the vortex core. The scattering angle for phonon rays is shown to be quadratic in the small quantity Γ/(2πcb)\Gamma/(2\pi cb), where Γ\Gamma is the vortex circulation, cc the speed of sound, and bb the impact parameter.Comment: 4 pages, 2 figures, RevTex4. Discussion of focal length added; to appear in Physical Review Letter

    Specific heat of the Kelvin modes in low temperature superfluid turbulence

    Full text link
    It is pointed out that the specific heat of helical vortex line excitations, in low temperature superfluid turbulence experiments carried out in helium II, can be of the same order as the specific heat of the phononic quasiparticles. The ratio of Kelvin mode and phonon specific heats scales with L_0 T^{-5/2}, where L_0 represents the smoothed line length per volume within the vortex tangle, such that the contribution of the vortex mode specific heat should be observable for L_0 = 10^6-10^8 cm^{-2}, and at temperatures which are of order 1-10 mK.Comment: 3 pages, 1 figur

    Short wavelength spectrum and Hamiltonian stability of vortex rings

    Full text link
    We compare dynamical and energetical stability criteria for vortex rings. It is argued that vortex rings will be intrinsically unstable against perturbations with short wavelengths below a critical wavelength, because the canonical vortex Hamiltonian is unbounded from below for these modes. To explicitly demonstrate this behaviour, we derive the oscillation spectrum of vortex rings in incompressible, inviscid fluids, within a geometrical cutoff procedure for the core. The spectrum develops an anomalous branch of negative group velocity, and approaches the zero of energy for wavelengths which are about six times the core diameter. We show the consequences of this dispersion relation for the thermodynamics of vortex rings in superfluid 4^4He at low temperatures.Comment: 7 pages, 4 figures, final version to appear in Phys. Rev.

    Intravenous mesenchymal stem cell therapy for traumatic brain injury.

    Get PDF
    OBJECT: Cell therapy has shown preclinical promise in the treatment of many diseases, and its application is being translated to the clinical arena. Intravenous mesenchymal stem cell (MSC) therapy has been shown to improve functional recovery after traumatic brain injury (TBI). Herein, the authors report on their attempts to reproduce such observations, including detailed characterizations of the MSC population, non-bromodeoxyuridine-based cell labeling, macroscopic and microscopic cell tracking, quantification of cells traversing the pulmonary microvasculature, and well-validated measurement of motor and cognitive function recovery. METHODS: Rat MSCs were isolated, expanded in vitro, immunophenotyped, and labeled. Four million MSCs were intravenously infused into Sprague-Dawley rats 24 hours after receiving a moderate, unilateral controlled cortical impact TBI. Infrared macroscopic cell tracking was used to identify cell distribution. Immunohistochemical analysis of brain and lung tissues 48 hours and 2 weeks postinfusion revealed transplanted cells in these locations, and these cells were quantified. Intraarterial blood sampling and flow cytometry were used to quantify the number of transplanted cells reaching the arterial circulation. Motor and cognitive behavioral testing was performed to evaluate functional recovery. RESULTS: At 48 hours post-MSC infusion, the majority of cells were localized to the lungs. Between 1.5 and 3.7% of the infused cells were estimated to traverse the lungs and reach the arterial circulation, 0.295% reached the carotid artery, and a very small percentage reached the cerebral parenchyma (0.0005%) and remained there. Almost no cells were identified in the brain tissue at 2 weeks postinfusion. No motor or cognitive functional improvements in recovery were identified. CONCLUSIONS: The intravenous infusion of MSCs appeared neither to result in significant acute or prolonged cerebral engraftment of cells nor to modify the recovery of motor or cognitive function. Less than 4% of the infused cells were likely to traverse the pulmonary microvasculature and reach the arterial circulation, a phenomenon termed the pulmonary first-pass effect, which may limit the efficacy of this therapeutic approach. The data in this study contradict the findings of previous reports and highlight the potential shortcomings of acute, single-dose, intravenous MSC therapy for TBI

    Probing O+ 2 potential curves with an XUV-IR pump-probe experiment

    Get PDF
    Citation: Cörlin, P., Fischer, A., Schönwald, M., Sperl, A., Mizuno, T., Thumm, U., . . . Moshammer, R. (2015). Probing O+ 2 potential curves with an XUV-IR pump-probe experiment. 635(11). doi:10.1088/1742-6596/635/11/112060Upon ionization of ground state O2 molecules in a short XUV pulse, we observe a time-dependent vibrational wave packet in the potential of the binding O+ 2 (a4?u) state. Our pump-probe delay dependent kinetic-energy-release (KER) spectra are in qualitative agreement with the results of coupled-channel simulations that are based on calculated Born-Oppenheimer potential-energy curves (PECs). Using a Morse potential adjusted to the experimental data most features of the experimental spectra are reproduced quantitatively. © Published under licence by IOP Publishing Ltd

    Probing calculated O-2(+) potential-energy curves with an XUV-IR pump-probe experiment

    Get PDF
    Citation: Corlin, P., Fischer, A., Schonwald, M., Sperl, A., Mizuno, T., Thumm, U., . . . Moshammer, R. (2015). Probing calculated O-2(+) potential-energy curves with an XUV-IR pump-probe experiment. Physical Review A, 91(4), 8. doi:10.1103/PhysRevA.91.043415We study dissociative photoionization of molecular oxygen in a kinematically complete XUV-IR pump-probe experiment. Detecting charged fragments and photoelectrons in coincidence using a reaction microscope, we observe a pump-probe delay-dependent yield of very low energetic O+ ions which oscillates with a period of 40 fs. This feature is caused by a time-dependent vibrational wave packet in the potential of the binding O-2(+)(a(4)Pi(u))state, which is probed by resonant absorption of a single infrared photon to the weakly repulsive O-2(+)(f(4)Pi(g)) state. By quantitative comparison of the experimental kinetic-energy-release (KER) and quantum-beat (QB) spectra with the results of a coupled-channel simulation, we are able to discriminate between the calculated adiabatic O-2(+) potential-energy curves (PECs) of Marian et al. [Marian, Marian, Peyerimhoff, Hess, Buenker, and Seger, Mol. Phys. 46, 779 (1982)] and Magrakvelidze et al. [Magrakvelidze, Aikens, and Thumm, Phys. Rev. A 86, 023402 (2012)]. In general, we find a good agreement between experimental and simulated KER and QB spectra. However, we could not reproduce all features of the experimental data with these PECs. In contrast, adjusting a Morse potential to the experimental data, most features of the experimental spectra are well reproduced by our simulation. By comparing this Morse potential to theoretically predicted PECs, we demonstrate the sensitivity of our experimental method to small changes in the shape of the binding potential
    • …
    corecore