732 research outputs found

    Nudged Elastic Band calculation of the binding potential for liquids at interfaces

    Get PDF
    The wetting behavior of a liquid on solid substrates is governed by the nature of the effective interaction between the liquid-gas and the solid-liquid interfaces, which is described by the binding or wetting potential g(h)g(h) which is an excess free energy per unit area that depends on the liquid film height hh. Given a microscopic theory for the liquid, to determine g(h)g(h) one must calculate the free energy for liquid films of any given value of hh; i.e. one needs to create and analyze out-of-equilibrium states, since at equilibrium there is a unique value of hh, specified by the temperature and chemical potential of the surrounding gas. Here we introduce a Nudged Elastic Band (NEB) approach to calculate g(h)g(h) and illustrate the method by applying it in conjunction with a microscopic lattice density functional theory for the liquid. We show too that the NEB results are identical to those obtained with an established method based on using a fictitious additional potential to stabilize the non-equilibrium states. The advantages of the NEB approach are discussed.Comment: 5 pages, 2 figure

    Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling

    Get PDF
    The contribution to the free energy for a film of liquid of thickness hh on a solid surface, due to the interactions between the solid-liquid and liquid-gas interfaces is given by the binding potential, g(h)g(h). The precise form of g(h)g(h) determines whether or not the liquid wets the surface. Note that differentiating g(h)g(h) gives the Derjaguin or disjoining pressure. We develop a microscopic density functional theory (DFT) based method for calculating g(h)g(h), allowing us to relate the form of g(h)g(h) to the nature of the molecular interactions in the system. We present results based on using a simple lattice gas model, to demonstrate the procedure. In order to describe the static and dynamic behaviour of non-uniform liquid films and drops on surfaces, a mesoscopic free energy based on g(h)g(h) is often used. We calculate such equilibrium film height profiles and also directly calculate using DFT the corresponding density profiles for liquid drops on surfaces. Comparing quantities such as the contact angle and also the shape of the drops, we find good agreement between the two methods. We also study in detail the effect on g(h)g(h) of truncating the range of the dispersion forces, both those between the fluid molecules and those between the fluid and wall. We find that truncating can have a significant effect on g(h)g(h) and the associated wetting behaviour of the fluid.Comment: 16 pages, 13 fig

    Collagen Assembly at the Cell Surface: Dogmas Revisited

    Get PDF
    With the increased awareness about the importance of the composition, organization, and stiffness of the extracellular matrix (ECM) for tissue homeostasis, there is a renewed need to understand the details of how cells recognize, assemble and remodel the ECM during dynamic tissue reorganization events. Fibronectin (FN) and fibrillar collagens are major proteins in the ECM of interstitial matrices. Whereas FN is abundant in cell culture studies, it is often only transiently expressed in the acute phase of wound healing and tissue regeneration, by contrast fibrillar collagens form a persistent robust scaffold in healing and regenerating tissues. Historically fibrillar collagens in interstitial matrices were seen merely as structural building blocks. Cell anchorage to the collagen matrix was thought to be indirect and occurring via proteins like FN and cell surface-mediated collagen fibrillogenesis was believed to require a FN matrix. The isolation of four collagen-binding integrins have challenged this dogma, and we now know that cells anchor directly to monomeric forms of fibrillar collagens via the α1β1, α2β1, α10β1 and α11β1 integrins. The binding of these integrins to the mature fibrous collagen matrices is more controversial and depends on availability of integrin-binding sites. With increased awareness about the importance of characterizing the total integrin repertoire on cells, including the integrin collagen receptors, the idea of an absolute dependence on FN for cell-mediated collagen fibrillogenesis needs to be re-evaluated. We will summarize data suggesting that collagen-binding integrins in vitro and in vivo are perfectly well suited for nucleating and supporting collagen fibrillogenesis, independent of FN.publishedVersio

    Microwave spectroscopic detection of flame-sampled combustion intermediates

    Get PDF
    Hansen N, Wullenkord J, Obenchain DA, Graf I, Kohse-Höinghaus K, Grabow J-U. Microwave spectroscopic detection of flame-sampled combustion intermediates. RSC Advances. 2017;7(60):37867-37872

    ASSESSING KINEMATICS AND KINETICS OF HIGH-SPEED RUNNING USING INERTIAL MOTION CAPTURE: A PRELIMINARY ANALYSIS

    Get PDF
    The purpose of this study was to determine whether inertial motion capture (IMC) in combination with musculoskeletal modeling is a suitable method to assess lower limb kinematics and kinetics during high-speed running. Optical motion capture (OMC), IMC and ground reaction forces (GRF) were used as input for musculoskeletal models. Kinematics showed excellent correlations (knee: ρ=0.98, rRMSE=21.0%, hip: ρ=0.95, rRMSE=18.5 %, ankle: ρ=0.93, rRMSE=46.6%). The ground reaction force predictions showed varying results (anteroposterior: ρ=0.77, rRMSE=33.4%, mediolateral: ρ=0.04, rRMSE=69.1%, vertical: ρ=0.78, rRMSE=25.7%). The examined IMC and musculoskeletal modeling approach was proven a useful alternative to OMC and force plates for outdoor measurements in high-speed running

    Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment

    Get PDF
    AbstractBackground and purposeThe latency of a multileaf collimator (MLC) tracking system used to overcome respiratory motion causes misalignment of the treatment beam with respect to the gross tumour volume, which may result in reduced target coverage. This study investigates the magnitude of this effect.Material and methodsSimulated superior–inferior breathing motion was used to construct histograms of isocentre offset with respect to the gross tumour volume (GTV) for a variety of tracking latencies. Dose distributions for conformal volumetric modulated arc therapy (VMAT) arcs were then calculated at a range of offsets and summed according to these displacement histograms. The results were verified by delivering the plans to a Delta4 phantom on a motion platform.ResultsIn the absence of an internal target margin, a tracking latency of 150ms reduces the GTV D95% by approximately 2%. With a margin of 2mm, the same drop in dose occurs for a tracking latency of 450ms. Lung V13Gy is unaffected by a range of latencies. These results are supported by the phantom measurements.ConclusionsAssuming that internal motion can be modelled by a rigid translation of the patient, MLC tracking of conformal VMAT can be effectively accomplished in the absence of an internal target margin for substantial breathing motion (4s period and 20mm peak–peak amplitude) so long as the system latency is less than 150ms
    corecore