13 research outputs found

    Effect of oral nitrate supplementation on pulmonary hemodynamics during exercise and time trial performance in normoxia and hypoxia: a randomized controlled trial.

    Get PDF
    BACKGROUND: Hypoxia-induced pulmonary vasoconstriction increases pulmonary arterial pressure (PAP) and may impede right heart function and exercise performance. This study examined the effects of oral nitrate supplementation on right heart function and performance during exercise in normoxia and hypoxia. We tested the hypothesis that nitrate supplementation would attenuate the increase in PAP at rest and during exercise in hypoxia, thereby improving exercise performance. METHODS: Twelve trained male cyclists [age: 31 ± 7 year (mean ± SD)] performed 15 km time-trial cycling (TT) and steady-state submaximal cycling (50, 100, and 150 W) in normoxia and hypoxia (11% inspired O2) following 3-day oral supplementation with either placebo or sodium nitrate (0.1 mmol/kg/day). We measured TT time-to-completion, muscle tissue oxygenation during TT and systolic right ventricle to right atrium pressure gradient (RV-RA gradient: index of PAP) during steady state cycling. RESULTS: During steady state exercise, hypoxia elevated RV-RA gradient (p > 0.05), while oral nitrate supplementation did not alter RV-RA gradient (p > 0.05). During 15 km TT, hypoxia lowered muscle tissue oxygenation (p < 0.05). Nitrate supplementation further decreased muscle tissue oxygenation during 15 km TT in hypoxia (p < 0.05). Hypoxia impaired time-to-completion during TT (p < 0.05), while no improvements were observed with nitrate supplementation in normoxia or hypoxia (p > 0.05). CONCLUSION: Our findings indicate that oral nitrate supplementation does not attenuate acute hypoxic pulmonary vasoconstriction nor improve performance during time trial cycling in normoxia and hypoxia

    Non-concerted evolution of the RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera).

    No full text
    The evolutionary dynamics of satellite DNA is most often studied in canonical mating systems, where bisexuality and panmixis are the rule. In eusocial termites, the limited number of reproducers starting a new colony and the maintenance of the colony through few neotenics act as bottle-necks both in space and time. No data on repetitive DNA are available for Isoptera and for their peculiar reproductive strategy. Here we present the first satellite DNA family isolated in European Reticulitermes. RET76 is a G+C rich satellite embodying two sub-families with a 76 bp monomer. RET76 sequences are highly variable (sequence homology is lower than 80% within sub-families and lower than 68% in the entire family) and this variability is equally distributed among the eight analysed taxa, thus depicting a pattern of non-concerted evolution. The absence of variant fixation – together with the strict monomer length conservation – may be explained at the molecular level as due to functional constraints acting on these sequences, and/or at the organismic level by considering the involvement of eusociality in preventing or greatly reducing variant fixation, somehow mimicking an unisexual strategy
    corecore