85 research outputs found

    Analysis of human brain tissue derived from DBS surgery

    Get PDF
    Background: Transcriptomic and proteomic profiling of human brain tissue is hindered by the availability of fresh samples from living patients. Postmortem samples usually represent the advanced disease stage of the patient. Furthermore, the postmortem interval can affect the transcriptomic and proteomic profiles. Therefore, fresh brain tissue samples from living patients represent a valuable resource of metabolically intact tissue. Implantation of deep brain stimulation (DBS) electrodes into the human brain is a neurosurgical treatment for, e.g., movement disorders. Here, we describe an improved approach to collecting brain tissues from surgical instruments used in implantation of DBS device for transcriptomics and proteomics analyses. Methods: Samples were extracted from guide tubes and recording electrodes used in routine DBS implantation procedure to treat patients with Parkinson's disease, genetic dystonia and tremor. RNA sequencing was performed in tissues extracted from the recording microelectrodes and liquid chromatography-mass spectrometry (LC-MS) performed in tissues from guide tubes. To assess the performance of the current approach, the obtained datasets were compared with previously published datasets representing brain tissues. Results: Altogether, 32,034 RNA transcripts representing the unique Ensembl gene identifiers were detected from eight samples representing both hemispheres of four patients. By using LC-MS, we identified 734 unique proteins from 31 samples collected from 14 patients. The datasets are available in the BioStudies database (accession number S-BSST667). Our results indicate that surgical instruments used in DBS installation retain brain material sufficient for protein and gene expression studies. Comparison with previously published datasets obtained with similar approach proved the robustness and reproducibility of the protocol. Conclusions: The instruments used during routine DBS surgery are a useful source for obtaining fresh brain tissues from living patients. This approach overcomes the issues that arise from using postmortem tissues, such as the effect of postmortem interval on transcriptomic and proteomic landscape of the brain, and can be used for studying molecular aspects of DBS-treatable diseases.Peer reviewe

    Case report: a novel frameshift mutation in the mitochondrial cytochrome c oxidase II gene causing mitochondrial disorder

    Get PDF
    Background: Mitochondrial cytochrome c oxidase 2, MT-CO2, encodes one of the three subunits, which form the catalytic core of cytochrome c oxidase (COX), complex IV. Mutations in MT-CO2 are rare and the associated phenotypes are variable including nonsyndromic and syndromic forms of mitochondrial diseases.Case presentation: We describe a 30-year-old man with cognitive decline, epilepsy, psychosis, exercise intolerance, sensorineural hearing impairment, retinitis pigmentosa, cataract and lactic acidosis. COX-deficient fibers and ragged red fibers were abundant in the muscle. Sequencing of mitochondrial DNA (mtDNA) revealed a novel frameshift mutation m.8156delG that was predicted to cause altered C-terminal amino acid sequence and to lead to truncation of the COX subunit 2. The deletion was heteroplasmic being present in 26% of the mtDNA in blood, 33% in buccal mucosa and 95% in muscle. Deletion heteroplasmy correlated with COX-deficiency in muscle histochemistry. The mother and the siblings of the proband did not harbor the deletion.Conclusions: The clinical features and muscle histology of the proband suggested a mitochondrial disorder. The m.8156delG deletion is a new addition to the short list of pathogenic mutations in the mtDNA-encoded subunits of COX. This case illustrates the importance of mtDNA sequence analysis in patients with an evident mitochondrial disorder

    Neonatal Alexander Disease : Novel GFAP Mutation and Comparison to Previously Published Cases

    Get PDF
    Alexander disease (AxD) is a genetic leukodystrophy caused by GFAP mutations leading to astrocyte dysfunction. Neonatal AxD is a rare phenotype with onset in the first month of life. The proband, belonging to a large pedigree with dominantly inherited benign familial neonatal epilepsy (BFNE), had a phenotype distinct from the rest of the family, with hypotonia and macrocephaly in addition to drug-resistant neonatal seizures. The patient deteriorated and passed away at 6 weeks of age. The pathological and neuroimaging data were consistent with the diagnosis of AxD. Genetic analysis of the proband identified a novel de novo GFAP missense mutation and a KCNQ2 splice site mutation segregating with the BFNE phenotype in the family. The GFAP mutation was located in the coil 2B region of GFAP protein, similar to most neonatal-onset AxD cases with an early death. The clinical and neuroradiological features of the previously published neonatal AxD patients are presented. This study further supports the classification of neonatal-onset AxD as a distinct phenotype based on the age of onset.Peer reviewe

    Modeling Rare Human Disorders in Mice : The Finnish Disease Heritage

    Get PDF
    The modification of genes in animal models has evidently and comprehensively improved our knowledge on proteins and signaling pathways in human physiology and pathology. In this review, we discuss almost 40 monogenic rare diseases that are enriched in the Finnish population and defined as the Finnish disease heritage (FDH). We will highlight how gene-modified mouse models have greatly facilitated the understanding of the pathological manifestations of these diseases and how some of the diseases still lack proper models. We urge the establishment of subsequent international consortiums to cooperatively plan and carry out future human disease modeling strategies. Detailed information on disease mechanisms brings along broader understanding of the molecular pathways they act along both parallel and transverse to the proteins affected in rare diseases, therefore also aiding understanding of common disease pathologies.Peer reviewe

    Phenotype-genotype correlations in Leigh syndrome : new insights from a multicentre study of 96 patients

    Get PDF
    Background Leigh syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder. While some genetic defects are associated with well-described phenotypes, phenotype-genotype correlations in Leigh syndrome are not fully explored. Objective We aimed to identify phenotype-genotype correlations in Leigh syndrome in a large cohort of systematically evaluated patients. Methods We studied 96 patients with genetically confirmed Leigh syndrome diagnosed and followed in eight European centres specialising in mitochondrial diseases. Results We found that ataxia, ophthalmoplegia and cardiomyopathy were more prevalent among patients with mitochondrial DNA defects. Patients with mutations in MT-ND and NDUF genes with complex I deficiency shared common phenotypic features, such as early development of central nervous system disease, followed by high occurrence of cardiac and ocular manifestations. The cerebral cortex was affected in patients with NDUF mutations significantly more often than the rest of the cohort. Patients with the m. 8993T> G mutation in MT-ATP6 gene had more severe clinical and radiological manifestations and poorer disease outcome compared with patients with the m. 8993T> C mutation. Conclusion Our study provides new insights into phenotype-genotype correlations in Leigh syndrome and particularly in patients with complex I deficiency and with defects in the mitochondrial ATP synthase.Peer reviewe

    Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease

    Get PDF
    The aim of this study was to compare the value of serum biomarkers, fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), with histological analysis of muscle in the diagnosis of mitochondrial disease. We collected 194 serum samples from patients with a suspected or known mitochondrial disease. Biomarkers were analyzed blinded using enzyme-labeled immunosorbent assay. Clinical data were collected using a structured questionnaire. Only 39% of patients with genetically verified mitochondrial disease had mitochondrial pathology in their muscle histology. In contrast, biomarkers were elevated in 62% of patients with genetically verified mitochondrial disease. Those with both biomarkers elevated had a muscle manifesting disorder and a defect affecting mitochondrial DNA expression. If at least one of the biomarkers was induced and the patient had a myopathic disease, a mitochondrial DNA expression disease was the cause with 94% probability. Among patients with biomarker analysis and muscle biopsy takenPeer reviewe

    Mitokondriaalinen resessiivinen ataksiasyndrooma ja valproaattihoidon toksisuus

    Get PDF
    Mitokondriaalinen resessiivinen ataksiasyndrooma (MIRAS) voi ilmetä lapsuus-, nuoruus- tai aikuisiällä. Tauti johtuu polymeraasi gamma -geenin mutaatioista. Oireisto vaihtelee lasten enkefaliitin tyyppisestä akuutista taudinkuvasta nuorten vaikeahoitoiseen epilepsiaan ja migreenityyppiseen päänsärkyyn sekä aikuisiän ataksiaan, ääreishermorappeumaan, psykiatrisiin oireisiin ja älyllisten toimintojen heikkenemiseen. Epilepsiaa tulee hoitaa aktiivisesti, koska se on tärkein potilaan ennustetta huonontava tekijä. Akuuttina status epilepticuksena alkava MIRAS on tärkeä tunnistaa, koska valproaattihoito aiheuttaa näille potilaille lähes poikkeuksetta akuutin, jopa maksansiirtoa vaativan maksavaurion. Suomessakin on vuosien varrella kuollut toistakymmentä lasta ja nuorta valproaatin indusoiman MIRAS-maksavaurion vuoksi. English summary: Mitochondrial recessive ataxia syndrome (MIRAS) and valproate toxicity The clinical phenotypes vary considerably and can be divided into three groups: 1) childhood-onset encephalopathy and hepatopathy, 2) juvenile onset refractory epilepsy and migraine-like headaches, and 3) adult-onset ataxia and neuropathy with additional symptoms such as psychiatric symptoms and cognitive impairment. The life-threatening MIRAS epilepsy should be actively treated, as it is associated with poor prognosis. The form of MIRAS, starting as acute, treatment resistant epilepsy, is important to diagnose, since valproate therapy almost always leads to acute liver failure requiring liver transplantation

    Phenotypic spectrum and clinical course of single large-scale mitochondrial DNA deletion disease in the paediatric population : a multicentre study

    Get PDF
    Background Large-scale mitochondrial DNA deletions (LMD) are a common genetic cause of mitochondrial disease and give rise to a wide range of clinical features. Lack of longitudinal data means the natural history remains unclear. This study was undertaken to describe the clinical spectrum in a large cohort of patients with paediatric disease onset. Methods A retrospective multicentre study was performed in patients with clinical onsetPeer reviewe

    Renal Phenotype in Mitochondrial Diseases : A Multicenter Study

    Get PDF
    Aims: This study aimed to investigate associations between renal and extrarenal manifestations of mitochondrial diseases and their natural history as well as predictors of renal disease severity and overall disease outcome. The secondary aim was to generate a protocol of presymptomatic assessment and monitoring of renal function in patients with a defined mitochondrial disease. Methods: A multicenter, retrospective cohort study was performed by the Mitochondrial Clinical and Research Network (MCRN). Patients of any age with renal manifestations associated with a genetically verified mitochondrial disease were included from 8 expert European centers specializing in mitochondrial diseases: Gothenburg, Oulu, Copenhagen, Bergen, Helsinki, Stockholm, Rotterdam, and Barcelona. Results: Of the 36 patients included, two-thirds had mitochondrial DNA-associated disease. Renal manifestations were the first sign of mitochondrial disease in 19%, and renal involvement was first identified by laboratory tests in 57% of patients. Acute kidney injury occurred in 19% of patients and was the first sign of renal disease in the majority of these. The most common renal manifestation was chronic kidney disease (75% with stage 2 or greater), followed by tubulopathy (44.4%), the latter seen mostly among patients with single large-scale mitochondrial DNA deletions. Acute kidney injury and tubulopathy correlated with worse survival outcome. The most common findings on renal imaging were increased echogenicity and renal dysplasia/hypoplasia. Renal histology revealed focal segmental glomerulosclerosis, nephrocalcinosis, and nephronophthisis. Conclusion: Acute kidney injury is a distinct renal phenotype in patients with mitochondrial disease. Our results highlight the importance to recognize renal disease as a sign of an underlying mitochondrial disease. Acute kidney injury and tubulopathy are 2 distinct indicators of poor survival in patients with mitochondrial diseases.Peer reviewe

    Cytosolic phosphoenolpyruvate carboxykinase deficiency : Expanding the clinical phenotype and novel laboratory findings

    Get PDF
    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) deficiency due to the homozygous PCK1 variant has recently been associated with childhood-onset hypoglycemia with a recognizable pattern of abnormal urine organic acids. In this study, 21 children and 3 adult patients with genetically confirmed PEPCK-C deficiency were diagnosed during the years 2016 to 2019 and the available biochemical and clinical data were collected. All patients were ethnic Finns. Most patients (22 out of 24) had a previously published homozygous PCK1 variant c.925G>A. Two patients had a novel compound heterozygous PCK1 variant c.925G>A and c.716C>T. The laboratory results showed abnormal urine organic acid profile with increased tricarboxylic acid cycle intermediates and inadequate ketone body production during hypoglycemia. The hypoglycemic episodes manifested predominantly in the morning. Infections, fasting or poor food intake, heavy exercise, alcohol consumption, and breastfeeding were identified as triggering factors. Five patients presented with neonatal hypoglycemia. Hypoglycemic seizures occurred in half of the patients (12 out of 24). The first hypoglycemic episode often occurred at the age of 1-2 years, but it sometimes presented at a later age, and could re-occur during school age or adulthood. This study adds to the laboratory data on PEPCK-C deficiency, confirming the recognizable urine organic acid pattern and identifying deficient ketogenesis as a novel laboratory finding. The phenotype is expanded suggesting that the risk of hypoglycemia may continue into adulthood if predisposing factors are present.Peer reviewe
    corecore