40 research outputs found

    Coupled Mg/Ca and clumped isotope analyses of foraminifera provide consistent water temperatures

    Get PDF
    The reliable determination of past seawater temperature is fundamental to paleoclimate studies. We test the robustness of two paleotemperature proxies by combining Mg/Ca and clumped isotopes (Δ47) on the same specimens of core top planktonic foraminifera. The strength of this approach is that Mg/Ca and Δ47 are measured on the same specimens of foraminifera, thereby providing two independent estimates of temperature. This replication constitutes a rigorous test of individual methods with the advantage that the same approach can be applied to fossil specimens. Aliquots for Mg/Ca and clumped analyses are treated in the same manner following a modified cleaning procedure of foraminifera for trace element and isotopic analyses. We analysed eight species of planktonic foraminifera from coretop samples over a wide range of temperatures from 2 to 29°C. We provide a new clumped isotope temperature calibrations using subaqueous cave carbonates, which is consistent with recent studies. Tandem Mg/Ca–Δ47 results follow an exponential curve as predicted by temperature calibration equations. Observed deviations from the predicted Mg/Ca-Δ47 relationship are attributed to the effects of Fe-Mn oxide coatings, contamination, or dissolution of foraminiferal tests. This coupled approach provides a high degree of confidence in temperature estimates when Mg/Ca and Δ47 yield concordant results, and can be used to infer the past δ18O of seawater (δ18Osw) for paleoclimate studies

    Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations

    Get PDF
    The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (>5‰) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks

    Phenotyping of lymphoproliferative tumours generated in xenografts of non-small cell lung cancer

    Get PDF
    Background: Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin. / Methods: The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised. To present the histology data herein, we developed a Python-based tool for generating patient-level pathology overview figures from whole-slide image files; PATHOverview is available on GitHub (https://github.com/EpiCENTR-Lab/PATHOverview). / Results: Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and 10% of lung squamous cell carcinoma transplantations, despite none of these patients having a prior or subsequent clinical history of lymphoproliferative disease. Lymphoproliferations were predominantly human CD20+ B cells and had the immunophenotype expected for post-transplantation diffuse large B cell lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene rearrangements in three tumours where multiple tumour regions had resulted in lymphoproliferations suggested that each had independent clonal origins. / Discussion: Overall, these data suggest that B cell clones with lymphoproliferative potential are present within primary NSCLC tumours, and that these are under continuous immune surveillance. Since these cells can be expanded following transplantation into NSG mice, our data highlight the value of quality control measures to identify lymphoproliferations within xenograft pipelines and support the incorporation of strategies to minimise lymphoproliferations during the early stages of xenograft establishment pipelines

    Toward Optimal Meat Pricing: Is It Time to Tax Meat Consumption?

    Get PDF
    Livestock is known to contribute significantly to climate change and to negatively impact global nitrogen cycles and biodiversity. However, there has been little research on economically efficient policies for regulating meat production and consumption. In the absence of first-best policy instruments for the livestock sector, second-best consumption taxes on meat can address multiple environmental externalities simultaneously as well as improve diet-related public health. In this article, we review the empirical evidence on the social costs of meat and examine the rationales for taxing meat consumption in high-income countries. We approach these issues from the perspective of public, behavioral, and welfare economics, focusing in particular on (1) the interaction of multiple environmental externalities of meat production and consumption, (2) “alternative protein” technologies, (3) adverse effects on human health, (4) animal welfare, and (5) distributional effects of meat taxation. We present preliminary estimates of the environmental social costs associated with meat consumption and find that meat is significantly underpriced. We conclude by identifying several directions for future research on optimal meat taxation

    Crystallographic Preferred Orientation of Olivine in Sheared Partially Molten Rocks: The Source of the “a-c Switch”

    No full text
    © 2018. American Geophysical Union. All Rights Reserved. To investigate the mechanism that produces the crystallographic preferred orientations (CPO) characteristic of sheared partially molten rocks of mantle composition, we analyzed the microstructures of samples of olivine plus 7% basaltic melt deformed in torsion to shear strains as large as γ = 13.3 Electron backscattered diffraction (EBSD) observations reveal a CPO characterized by a weak a-c girdle in the shear plane that develops by γ = 4. This CPO, which exhibits a slightly stronger alignment of [001] than [100] axes in the shear direction, changes little in both strength and distribution with increasing stress and with increasing strain. Furthermore, it is significantly weaker than the CPO observed for dry, melt-free olivine aggregates. Orientation maps correlated with grain shape measurements from tangential, radial, and transverse sections indicate that olivine grains are longer along [001] axes than along [100] axes and shortest along [010] axes. This morphology is similar to that of olivine grains in a mafic melt. We conclude that the weak a-c girdle observed in sheared partially molten rocks reflects contributions from two processes. Due to their shape-preferred orientation (SPO), grains rotate to align their [001] axes parallel to the flow direction. At the same time, dislocation glide on the (010)[100] slip system rotates [100] axes into the flow direction. The presence of this CPO in partially molten regions of the upper mantle significantly impacts the interpretation of seismic anisotropy and kinematics of flow

    Aggradational lobe fringes: The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns

    Get PDF
    Seabed topography is ubiquitous across basin-floor environments, and influences sediment gravity flows and sediment dispersal patterns. The impact of steep (several degrees) confining slopes on sedimentary facies and depositional architecture has been widely documented. However, the influence of gentle (fraction of a degree) confining slopes is less well-documented, largely due to outcrop limitations. Here, exceptional outcrop and research borehole data from Unit A of the Permian Laingsburg Formation, South Africa, provides the means to examine the influence of subtle lateral confinement on flow behaviour and lobe stacking patterns. The dataset describes the detailed architecture of subunits A.1 to A.6, a succession of stacked lobe complexes, over a palinspastically restored 22 km across-strike transect. Facies distributions, stacking patterns, thickness and palaeoflow trends indicate the presence of a south-east facing low angle (fraction of a degree) lateral intrabasinal slope. Interaction between stratified turbidity currents with a thin basal sand-prone part and a thick mud-prone part and the confining slope result in facies transition from thick-bedded sandstones to thin-bedded heterolithic lobe fringe-type deposits. Slope angle dictates the distance over which the facies transition occurs (hundreds of metres to kilometres). These deposits are stacked vertically over tens of metres in successive lobe complexes to form an aggradational succession of lobe fringe. Extensive slides and debrites are present at the base of lobe complexes, and are associated with steeper restored slope gradients. The persistent facies transition across multiple lobe complexes, and the mass flow deposits, suggests that the intrabasinal slope was dynamic and was never healed by deposition during Unit A times. This study demonstrates the significant influence that even subtle basin-floor topography has on flow behaviour and depositional architecture in the Laingsburg depocentre, Karoo Basin; presenting a new aggradational lobe fringe facies association and recognition criteria for subtle confinement in less well-exposed and subsurface basin fills

    Aggradational lobe fringes: The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns

    No full text
    Seabed topography is ubiquitous across basin-floor environments, and influences sediment gravity flows and sediment dispersal patterns. The impact of steep (several degrees) confining slopes on sedimentary facies and depositional architecture has been widely documented. However, the influence of gentle (fraction of a degree) confining slopes is less well-documented, largely due to outcrop limitations. Here, exceptional outcrop and research borehole data from Unit A of the Permian Laingsburg Formation, South Africa, provide the means to examine the influence of subtle lateral confinement on flow behaviour and lobe stacking patterns. The dataset describes the detailed architecture of subunits A.1 to A.6, a succession of stacked lobe complexes, over a palinspastically restored 22 km across-strike transect. Facies distributions, stacking patterns, thickness and palaeoflow trends indicate the presence of a south-east facing low angle (fraction of a degree) lateral intrabasinal slope. Interaction between stratified turbidity currents with a thin basal sand-prone part and a thick mud-prone part and the confining slope results in facies transition from thick-bedded sandstones to thin-bedded heterolithic lobe fringe-type deposits. Slope angle dictates the distance over which the facies transition occurs (hundreds of metres to kilometres). These deposits are stacked vertically over tens of metres in successive lobe complexes to form an aggradational succession of lobe fringes. Extensive slides and debrites are present at the base of lobe complexes, and are associated with steeper restored slope gradients. The persistent facies transition across multiple lobe complexes, and the mass flow deposits, suggests that the intrabasinal slope was dynamic and was never healed by deposition during Unit A times. This study demonstrates the significant influence that even subtle basin-floor topography has on flow behaviour and depositional architecture of submarine lobe complexes. In addition, we present a new aggradational lobe fringe facies associations and recognition criteria for subtle confinement in less well-exposed and subsurface basin fills

    Canadian West Coast Hermetics : The Metaphysical Landscape = Les Hermétiques canadiens de la Côte Ouest : Le paysage métaphysique

    No full text
    Six artists explore aspects of mysticism and the collective unconscious through collage and painting using archetypal imagery and abstraction. Includes artists' statements and biographical notes

    Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2

    No full text
    Oceanic uptake of anthropogenic CO2 leads to decreased pH, carbonate ion concentration, and saturation state with respect to CaCO3 minerals, causing increased dissolution of these minerals at the deep seafloor. This additional dissolution will figure prominently in the neutralization of man-made CO2 However, there has been no concerted assessment of the current extent of anthropogenic CaCO3 dissolution at the deep seafloor. Here, recent databases of bottom-water chemistry, benthic currents, and CaCO3 content of deep-sea sediments are combined with a rate model to derive the global distribution of benthic calcite dissolution rates and obtain primary confirmation of an anthropogenic component. By comparing preindustrial with present-day rates, we determine that significant anthropogenic dissolution now occurs in the western North Atlantic, amounting to 40-100% of the total seafloor dissolution at its most intense locations. At these locations, the calcite compensation depth has risen ∼300 m. Increased benthic dissolution was also revealed at various hot spots in the southern extent of the Atlantic, Indian, and Pacific Oceans. Our findings place constraints on future predictions of ocean acidification, are consequential to the fate of benthic calcifiers, and indicate that a by-product of human activities is currently altering the geological record of the deep sea

    Stratigraphic record of the asteroidal Veritas breakup in the Tortonian Monte dei Corvi section (Ancona, Italy)

    No full text
    The discovery of elevated concentrations of the cosmogenic radionuclide 3He in deep- sea sediments from Ocean Drilling Program (ODP) Site 926 (Atlantic Ocean) and ODP Site 757 (Indian Ocean) points toward ac- cretion of extraterrestrial matter, probably as a result of the catastrophic disruption of a large asteroid that produced the Veritas fam- ily of asteroids at ca. 8.3 ± 0.5 Ma, and which may have had important effects on the global climatic and ecologic systems. Here, we in- vestigated the signatures possibly related to the Veritas event by performing a high- resolution multiproxy stratigraphic analysis through the late Tortonian–early Messinian Monte dei Corvi section near Ancona, Italy. Closely spaced bulk-rock samples through a 36-m-thick section, approximately spanning from ca. 9.9 Ma to ca. 6.4 Ma, show an ~5- fold 3He anomaly starting at ca. 8.5 Ma and returning to background values at ca. 6.9 Ma, con rming the global nature of the event. We then analyzed, at 5 cm intervals, bulk-rock samples for sedimentary and environmen- tal proxies such as magnetic susceptibility, calcium carbonate content, total organic carbon, and bulk carbonate d18O and d13C, through a 21-m-thick section encompassing the 3He anomaly. Available high-resolution sea-surface temperature data (via alkenone analyses) for this site show a temperature decrease starting exactly at the inception of the 3He anomaly. Cyclostratigraphic fast- Fourier-transform spectral analyses of the proxies indicate an age of 8.47 ± 0.05 Ma for the inception of the 3He anomaly. A search for impact ejecta (analogous to what is pres- ent in the late Eocene, where both a 3He anomaly and large-scale impact events are recorded) was not successful. Detailed cy- clostratigraphic analyses of our data suggest that the changes in the stable isotope series and environmental proxy series through this late Tortonian time interval had a common forcing agent, and that perturbations of or- bitally forced climate cycles are present ex- actly through the interval with the enhanced in ux of extraterrestrial 3He. Thus, the che- mostratigraphic evidence for a collisional event that created the Veritas family of aster- oids, coinciding with climate perturbations on Earth, suggests yet another form of inter- action between Earth and the solar system
    corecore