120 research outputs found

    Biomass yield and heterosis of crosses within and between European winter cultivars of turnip rape (Brassica rapa L.)

    Get PDF
    Because of its high growth rate at low temperatures in early spring, there is renewed interest in Brassica rapa as a winter crop for biomass production in Europe. The available cultivars are not developed for this purpose however. An approach for breeding bioenergy cultivars of B. rapa could be to establish populations from two or more different cultivars with high combining ability. The objective of this study was to evaluate the heterosis for biomass yield in the European winter B. rapa genepool. The genetic variation and heterosis of the biomass parameters: dry matter content, fresh and dry biomass yields were investigated in three cultivars representing different eras of breeding by comparing full-sibs-within and full-sibs-between the cultivars. Field trials were performed at two locations in Germany in 2005–2006. Mean mid-parent heterosis was low with 2.5% in fresh and 3.0% in dry biomass yield in full-sibs-between cultivars. Mean values of individual crosses revealed a higher variation in mid-parent heterosis ranging from 14.6% to −7.5% in fresh biomass yield and from 19.7% to −12.7% in dry biomass yield. The low heterosis observed in hybrids between European winter cultivars can be explained by the low genetic variation between these cultivars as shown earlier with molecular markers. In conclusion, a B. rapa breeding program for biomass production in Europe should not only use European genetic resources, but should also utilize the much wider worldwide variation in this species

    Optimum allocation of resources for QTL detection using a nested association mapping strategy in maize

    Get PDF
    In quantitative trait locus (QTL) mapping studies, it is mandatory that the available financial resources are spent in such a way that the power for detection of QTL is maximized. The objective of this study was to optimize for three different fixed budgets the power of QTL detection 1 − β* in recombinant inbred line (RIL) populations derived from a nested design by varying (1) the genetic complexity of the trait, (2) the costs for developing, genotyping, and phenotyping RILs, (3) the total number of RILs, and (4) the number of environments and replications per environment used for phenotyping. Our computer simulations were based on empirical data of 653 single nucleotide polymorphism markers of 26 diverse maize inbred lines which were selected on the basis of 100 simple sequence repeat markers out of a worldwide sample of 260 maize inbreds to capture the maximum genetic diversity. For the standard scenario of costs, the optimum number of test environments (Eopt) ranged across the examined total budgets from 7 to 19 in the scenarios with 25 QTL. In comparison, the Eopt values observed for the scenarios with 50 and 100 QTL were slightly higher. Our finding of differences in 1 − β* estimates between experiments with optimally and sub-optimally allocated resources illustrated the potential to improve the power for QTL detection without increasing the total resources necessary for a QTL mapping experiment. Furthermore, the results of our study indicated that also in studies using the latest genomics tools to dissect quantitative traits, it is required to evaluate the individuals of the mapping population in a high number of environments with a high number of replications per environment

    QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes

    Get PDF
    Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman’s rank correlation, rs = −0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (rs = −0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways

    Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linkage maps are an integral resource for dissection of complex genetic traits in plant and animal species. Canonical map construction follows a well-established workflow: an initial discovery phase where genetic markers are mined from a small pool of individuals, followed by genotyping of selected mapping populations using sets of marker panels. A newly developed sequence-based marker technology, Restriction site Associated DNA (RAD), enables synchronous single nucleotide polymorphism (SNP) marker discovery and genotyping using massively parallel sequencing. The objective of this research was to assess the utility of RAD markers for linkage map construction, employing barley as a model system. Using the published high density EST-based SNP map in the Oregon Wolfe Barley (OWB) mapping population as a reference, we created a RAD map using a limited set of prior markers to establish linakge group identity, integrated the RAD and prior data, and used both maps for detection of quantitative trait loci (QTL).</p> <p>Results</p> <p>Using the RAD protocol in tandem with the Illumina sequence by synthesis platform, a total of 530 SNP markers were identified from initial scans of the OWB parental inbred lines - the "dominant" and "recessive" marker stocks - and scored in a 93 member doubled haploid (DH) mapping population. RAD sequence data from the structured population was converted into allele genotypes from which a genetic map was constructed. The assembled RAD-only map consists of 445 markers with an average interval length of 5 cM, while an integrated map includes 463 RAD loci and 2383 prior markers. Sequenced RAD markers are distributed across all seven chromosomes, with polymorphic loci emanating from both coding and noncoding regions in the <it>Hordeum </it>genome. Total map lengths are comparable and the order of common markers is identical in both maps. The same large-effect QTL for reproductive fitness traits were detected with both maps and the majority of these QTL were coincident with a dwarfing gene (<it>ZEO) </it>and the <it>VRS1 </it>gene, which determines the two-row and six-row germplasm groups of barley.</p> <p>Conclusions</p> <p>We demonstrate how sequenced RAD markers can be leveraged to produce high quality linkage maps for detection of single gene loci and QTLs. By combining SNP discovery and genotyping into parallel sequencing events, RAD markers should be a useful molecular breeding tool for a range of crop species. Expected improvements in cost and throughput of second and third-generation sequencing technologies will enable more powerful applications of the sequenced RAD marker system, including improvements in <it>de novo </it>genome assembly, development of ultra-high density genetic maps and association mapping.</p

    Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance

    Get PDF
    Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11KAS, were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11KAS was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11KAS was carried out using 372 BC3F2:3 recombinants and 399 BC3F3:4 lines selected from 7,018 BC3F2 plants of the cross SL-234/Koshihikari. The qSTV11KAS was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11KAS, and the markers may be used for molecular breeding of RSV resistant rice varieties

    QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.)

    Get PDF
    A quantitative trait locus (QTL) analysis designed for a multi-parent population was carried out and tested in oil palm (Elaeis guineensis Jacq.), which is a diploid cross-fertilising perennial species. A new extension of the MCQTL package was especially designed for crosses between heterozygous parents. The algorithm, which is now available for any allogamous species, was used to perform and compare two types of QTL search for small size families, within-family analysis and across-family analysis, using data from a 2 × 2 complete factorial mating experiment involving four parents from three selected gene pools. A consensus genetic map of the factorial design was produced using 251 microsatellite loci, the locus of the Sh major gene controlling fruit shell presence, and an AFLP marker of that gene. A set of 76 QTLs involved in 24 quantitative phenotypic traits was identified. A comparison of the QTL detection results showed that the across-family analysis proved to be efficient due to the interconnected families, but the family size issue is just partially solved. The identification of QTL markers for small progeny numbers and for marker-assisted selection strategies is discussed

    Idiopathic pulmonary fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a non-neoplastic pulmonary disease that is characterized by the formation of scar tissue within the lungs in the absence of any known provocation. IPF is a rare disease which affects approximately 5 million persons worldwide. The prevalence is estimated to be slightly greater in men (20.2/100,000) than in women (13.2/100,000). The mean age at presentation is 66 years. IPF initially manifests with symptoms of exercise-induced breathless and dry coughing. Auscultation of the lungs reveals early inspiratory crackles, predominantly located in the lower posterior lung zones upon physical exam. Clubbing is found in approximately 50% of IPF patients. Cor pulmonale develops in association with end-stage disease. In that case, classic signs of right heart failure may be present. Etiology remains incompletely understood. Some environmental factors may be associated with IPF (cigarette smoking, exposure to silica and livestock). IPF is recognized on high-resolution computed tomography by peripheral, subpleural lower lobe reticular opacities in association with subpleural honeycomb changes. IPF is associated with a pathological lesion known as usual interstitial pneumonia (UIP). The UIP pattern consists of normal lung alternating with patches of dense fibrosis, taking the form of collagen sheets. The diagnosis of IPF requires correlation of the clinical setting with radiographic images and a lung biopsy. In the absence of lung biopsy, the diagnosis of IPF can be made by defined clinical criteria that were published in guidelines endorsed by several professional societies. Differential diagnosis includes other idiopathic interstitial pneumonia, connective tissue diseases (systemic sclerosis, polymyositis, rheumatoid arthritis), forme fruste of autoimmune disorders, chronic hypersensitivity pneumonitis and other environmental (sometimes occupational) exposures. IPF is typically progressive and leads to significant disability. The median survival is 2 to 5 years from the time of diagnosis. Medical therapy is ineffective in the treatment of IPF. New molecular therapeutic targets have been identified and several clinical trials are investigating the efficacy of novel medication. Meanwhile, pulmonary transplantation remains a viable option for patients with IPF. It is expected that, during the next decade, considerable progress will be made toward the understanding and treatment of this devastating illness

    Conventional and Molecular Breeding Approaches for Biofortification of Pearl Millet

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.] is an essential diet of more than 90 million people in the semi-arid tropics of the world where droughts and low fertility of soils cause frequent failures of other crops. It is an important nutri-rich grain cereal in the drier regions of the world grown on 26 mha by millions of farmers (IFAD 1999; Yadav and Rai 2013). This makes pearl millet the sixth most important crop in the world and fourth most important food crop of the India, next to rice, wheat, and maize with annual cultivation over an area of ~8 mha. Pearl millet is also primary food crop in sub-Saharan Africa and is grown on 15 mha (Yadav and Rai 2013). The significant increase in productivity of pearl millet in India is attributed to development and adoption of hybrids of early to medium duration maturity. More than 120 diverse hybrids/varieties have been released till date for various production environments. The heterosis breeding and improved crop management technologies increased productivity substantially achieving higher increased production of 9.80 mt in 2016–2017 from 2.60 mt in 1950–1951 in spite of declined of area under the crop by 20–30% over last two decades (Yadav et al. 2012)
    corecore