15 research outputs found
BioquĂmica y biologĂa molecular del metabolismo de hidratos de carbono y de la sĂntesis de exopolisacáridos en Rhizobiaceae
Fil: Uttaro, Antonio Domingo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Phagocytic and pinocytic uptake of cholesterol in Tetrahymena thermophila impact differently on gene regulation for sterol homeostasis
The ciliate Tetrahymena thermophila can either synthesize tetrahymanol or when available, assimilate and modify sterols from its diet. This metabolic shift is mainly driven by transcriptional regulation of genes for tetrahymanol synthesis (TS) and sterol bioconversion (SB). The mechanistic details of sterol uptake, intracellular trafficking and the associated gene expression changes are unknown. By following cholesterol incorporation over time in a conditional phagocytosis-deficient mutant, we found that although phagocytosis is the main sterol intake route, a secondary endocytic pathway exists. Different expression patterns for TS and SB genes were associated with these entry mechanisms. Squalene synthase was down-regulated by a massive cholesterol intake only attainable by phagocytosis-proficient cells, whereas C22-sterol desaturase required ten times less cholesterol and was up-regulated in both wild-type and mutant cells. These patterns are suggestive of at least two different signaling pathways. Sterol trafficking beyond phagosomes and esterification was impaired by the NPC1 inhibitor U18666A. NPC1 is a protein that mediates cholesterol export from late endosomes/lysosomes in mammalian cells. U18666A also produced a delay in the transcriptional response to cholesterol, suggesting that the regulatory signals are triggered between lysosomes and the endoplasmic reticulum. These findings could hint at partial conservation of sterol homeostasis between eukaryote lineages.Fil: Hernandez, Josefina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Gabrielli, Matias. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Costa, Joaquin. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Uttaro, Antonio Domingo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; Argentin
Improved Characterization of Polyunsaturated Fatty Acids Desaturases and Elongases by Co-Expression in Saccharomyces cerevisiae with a Protozoan Acyl-CoA Synthetase
Saccharomyces cerevisiae is a valuable host for the expression and characterization of eukaryotic enzymes involved in polyunsaturated fatty acid (PUFA) biosynthesis, such as elongases and desaturases. The yeast allows a correct subcellular localization of these proteins, provides electron donors required by desaturases and is unable to synthesize PUFA that could interfere in the enzymes characterization. Unfortunately, S. cerevisiae incorporates very long chain PUFAs inefficiently, which could interfere in the characterization of enzymes using these substrates. Acyl-CoA synthetases (ACS) are involved in fatty acids uptake, and catalyze the synthesis of the corresponding CoA thioesters. ACS provides the substrates for elongases, acyl-CoA desaturases and acyl transferases. Transferases are required to synthesize phospholipids which in turn, are substrates for acyl-lipid desaturases. Expression in yeast of Trypanosoma brucei ACS1 notably improves the uptake of a wide variety of PUFA. Co-expression of ACS1 with Elo5 elongase from Leishmania major or Des4 desaturase from T. brucei showes, respectively, 2- and 5.6-fold increases in the uptake of the PUFA substrates and 2.4- and 3.5-fold increases in substrate conversion. It also allows to produce significant amount of Des4 desaturase product for further analysis, whereas it is obtained in trace amounts when the enzyme is expressed alone. Practical applications: In this report, the use of yeast strains expressing ACS1 is proposed as a useful tool in the characterization of polyunsaturated fatty acids desaturases and elongases. Furthermore, this model could be used for the production of nutraceutical PUFA. S. cerevisiae (Sc) expressing an Acyl-CoA synthetase from T. brucei (ACS1) significantly increases the intake of polyunsaturated fatty acids (PUFA), which are unusual for the yeast. It improves the possibility to study enzymes from the PUFA synthetic pathway, such as desaturases and elongases, by co-expression in a Sc-ACS1 background.Fil: Tripodi, Karina Eva Josefina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Berardi, Florencia. Universidad Nacional de Rosario; ArgentinaFil: Uttaro, Antonio Domingo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; Argentin
A novel Tetrahymena thermophila sterol C-22 desaturase belongs to the fatty acid hydroxylase/desaturase superfamily
Sterols in eukaryotic cells play important roles in modulating membrane fluidity and in cell signaling and trafficking.
During evolution, a combination of gene losses and acquisitions gave rise to an extraordinary diversity of sterols in
different organisms. The sterol C-22 desaturase identified in
plants and fungi as a cytochrome P-450 monooxygenase
evolved from the first eukaryotic cytochrome P450 and was lost
in many lineages. Although the ciliate Tetrahymena thermophila desaturates sterols at the C-22 position, no cytochrome
P-450 orthologs are present in the genome. Here, we aim to
identify the genes responsible for the desaturation as well as
their probable origin. We used gene knockout and yeast heterologous expression approaches to identify two putative
genes, retrieved from a previous transcriptomic analysis, as
sterol C-22 desaturases. Furthermore, we demonstrate using
bioinformatics and evolutionary analyses that both genes
encode a novel type of sterol C-22 desaturase that belongs to
the large fatty acid hydroxylase/desaturase superfamily and the
genes originated by genetic duplication prior to functional
diversification. These results stress the widespread existence of
nonhomologous isofunctional enzymes among different lineages of the tree of life as well as the suitability for the use of
T. thermophila as a valuable model to investigate the evolutionary process of large enzyme families.Fil: Sanchez Granel, MarĂa L. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de NanobiotecnologĂa (UBA-CONICET); Argentina.Fil: Fricska, Annamária. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de NanobiotecnologĂa (UBA-CONICET); Argentina.Fil: Gargiulo, Laura B. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de NanobiotecnologĂa (UBA-CONICET); Argentina.Fil: Nudel, Clara B. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de NanobiotecnologĂa (UBA-CONICET); Argentina.Fil: Nusblat, Alejandro D. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de NanobiotecnologĂa (UBA-CONICET); Argentina.Fil: Siburu, Nicolás G. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Uttaro, Antonio Domingo. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Maldonado, Lucas L. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂa y ParasitologĂa MĂ©dica (UBA-CONICET); Argentina
Genome-wide Transcriptional Analysis of Tetrahymena thermophila Response to Exogenous Cholesterol
The ciliate Tetrahymena thermophila does not require sterols for growth and synthesizes pentacyclic triterpenoid alcohols, mainly tetrahymanol, as sterol surrogates. However, when sterols are present in the environment, T. thermophila efficiently incorporates and modifies them. These modifications consist of desaturation reactions at positions C5(6), C7(8), and C22(23), and de-ethylation at C24 of 29-carbon sterols (i.e. phytosterols). Three out of four of the enzymes involved in the sterol modification pathway have been previously identified. However, identification of the sterol C22 desaturase remained elusive, as did other basic aspects of this metabolism. To get more insights into this peculiar metabolism, we here perform a whole transcriptome analysis of T. thermophila in response to exogenous cholesterol. We found 356 T. thermophila genes to be differentially expressed after supplementation with cholesterol for 2 h. Among those that were upregulated, we found two genes belonging to the long spacing family of desaturases that we tentatively identified by RNAi analysis as sterol C22 desaturases. Additionally, we determined that the inhibition of tetrahymanol synthesis after supplementation with cholesterol occurs by a transcriptional downregulation of genes involved in squalene synthesis and cyclization. Finally, we identified several uncharacterized genes that are likely involved in sterols transport and signaling.Fil: Najle, Sebastián Rodrigo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; Argentina. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones CientĂficas; EspañaFil: Hernandez, Josefina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Ocaña Pallarès, Eduard. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones CientĂficas; EspañaFil: GarcĂa Siburu, Nicolás Pablo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Nusblat, Alejandro David. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de NanobiotecnologĂa. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de NanobiotecnologĂa; ArgentinaFil: Nudel, Berta Clara. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de NanobiotecnologĂa. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de NanobiotecnologĂa; ArgentinaFil: Slamovits, Claudio H.. Dalhousie University Halifax; CanadáFil: Uttaro, Antonio Domingo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; Argentin
BioquĂmica y biologĂa molecular del metabolismo de hidratos de carbono y de la sĂntesis de exopolisacáridos en Rhizobiaceae
Fil: Uttaro, Antonio Domingo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Phagocytic and pinocytic uptake of cholesterol in Tetrahymena thermophila impact differently on gene regulation for sterol homeostasis
The ciliate Tetrahymena thermophila can either synthesize tetrahymanol or when available, assimilate and modify sterols from its diet. This metabolic shift is mainly driven by transcriptional regulation of genes for tetrahymanol synthesis (TS) and sterol bioconversion (SB). The mechanistic details of sterol uptake, intracellular trafficking and the associated gene expression changes are unknown. By following cholesterol incorporation over time in a conditional phagocytosis-deficient mutant, we found that although phagocytosis is the main sterol intake route, a secondary endocytic pathway exists. Different expression patterns for TS and SB genes were associated with these entry mechanisms. Squalene synthase was down-regulated by a massive cholesterol intake only attainable by phagocytosis-proficient cells, whereas C22-sterol desaturase required ten times less cholesterol and was up-regulated in both wild-type and mutant cells. These patterns are suggestive of at least two different signaling pathways. Sterol trafficking beyond phagosomes and esterification was impaired by the NPC1 inhibitor U18666A. NPC1 is a protein that mediates cholesterol export from late endosomes/lysosomes in mammalian cells. U18666A also produced a delay in the transcriptional response to cholesterol, suggesting that the regulatory signals are triggered between lysosomes and the endoplasmic reticulum. These findings could hint at partial conservation of sterol homeostasis between eukaryote lineagesFil: Herández, Josefina. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (CONICET). Argentina.Fil: Gabrielli, MatĂas. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (CONICET). Argentina.Fil: Costa, JoaquĂn. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (CONICET). Argentina.Fil: Uttaro, Antonio Domingo. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (CONICET). Argentina
Biosynthesis of very long chain fatty acids in Trypanosoma cruzi
Trypanosoma brucei and Trypanosoma cruzi showed similar fatty acid (FA) compositions, having a high proportion of unsaturated FAs, mainly 18:2Δ9,12 (23–39 %) and 18:1Δ9 (11–17 %). C22 polyunsaturated FAs are in significant amounts only in T. brucei (12–20 %) but represent a mere 2 % of total FAs in T. cruzi. Both species have also similar profiles of medium- and long-chain saturated FAs, from 14:0 to 20:0. Interestingly, procyclic and bloodstream forms of T. brucei lack very long chain FAs (VLCFAs), whereas epimastigotes and trypomastigotes of T. cruzi contain 22:0 (0.1–0.2 %), 24:0 (1.5–2 %), and 26:0 (0.1–0.2 %). This is in agreement with the presence of an additional FA elongase gene (TcELO4) in T. cruzi. TcELO4 was expressed in a Saccharomyces cerevisiae mutant lacking the endogenous ScELO3, rescuing the synthesis of saturated and hydroxylated C26 FAs in the yeast. Expression of TcELO4 also rescued the synthetic lethality of a ScELO2, ScELO3 double mutation, and the VLCFA profile of the transformed yeast was similar to that found in T. cruzi. By identifying TcELO4 as the enzyme responsible for the elongation of FA from 16:0 and 18:0 up to 26:0, with 24:0 being the preferred product, this work completed the characterization of FA elongases in Trypanosoma spp.Fil: Livore, Veronica Ines. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Uttaro, Antonio Domingo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; Argentin
Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals
Sterols are essential for several physiological processes in most eukaryotes.
Sterols regulate membrane homeostasis and participate in different signalling
pathways not only as precursors of steroid hormones and vitamins, but also
through its role in the formation of lipid rafts. Two major types of sterols,
cholesterol and ergosterol, have been described so far in the opisthokonts,
the clade that comprise animals, fungi and their unicellular relatives. Choles terol predominates in derived bilaterians, whereas ergosterol is what generally
defines fungi. We here characterize, by a combination of bioinformatic and bio chemical analyses, the sterol metabolism in the filasterean Capsaspora
owczarzaki, a close unicellular relative of animals that is becoming a model
organism. We found that C. owczarzaki sterol metabolism combines enzymatic
activities that are usually considered either characteristic of fungi or exclusive
to metazoans. Moreover, we observe a differential transcriptional regulation of
this metabolism across its life cycle. Thus, C. owczarzaki alternates between
synthesizing 7-dehydrocholesterol de novo, which happens at the cystic
stage, and the partial conversion—via a novel pathway—of incorporated
cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial
and aggregative stages.Fil: Najle, Sebastián R. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Najle, Sebastián R. Consejo Superior de Investigaciones CientĂficas (CSIC) - Universitat Pompeu Fabra. Institut de Biologia Evolutiva (IBE); España.Fil: Molina, MarĂa Celeste. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Ruiz-Trillo, Iñaki. Consejo Superior de Investigaciones CientĂficas (CSIC) - Universitat Pompeu Fabra. Institut de Biologia Evolutiva (IBE); España.Fil: Ruiz-Trillo, Iñaki. Universitat de Barcelona. Departament de GenĂ©tica; España.Fil: Ruiz-Trillo, Iñaki. InstituciĂł Catalana de Recerca i Estudis Avançats (ICREA); España.Fil: Uttaro, Antonio Domingo. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario (IBR -CONICET); Argentina
Lipoic acid metabolism in Trypanosoma cruzi as putative target for chemotherapy
Lipoic acid (LA) is a cofactor of relevant enzymatic complexes including the glycine cleave system and 2-ketoacid dehydrogenases. Intervention on LA de novo synthesis or salvage could have pleiotropic deleterious effect in cells, making both pathways attractive for chemotherapy. We show that Trypanosoma cruzi was susceptible to treatment with LA analogues. 8-Bromo-octanic acid (BrO) inhibited the growth of epimastigote forms of both Dm28c and CL Brener strains, although only at high (chemotherapeutically irrelevant) concentrations. The methyl ester derivative MBrO, was much more effective, with EC50 values one order of magnitude lower (62–66 ÎĽM). LA did not bypass the toxic effect of its analogues. Small monocarboxylic acids appear to be poorly internalized by T. cruzi: [14C]-octanoic acid was taken up 12 fold less efficiently than [14C]-palmitic acid. Western blot analysis of lipoylated proteins allowed the detection of the E2 subunits of pyruvate dehydrogenase (PDH), branched chain 2-ketoacid dehydrogenase and 2-ketoglutarate dehydrogenase complexes. Growth of parasites in medium with 10 fold lower glucose content, notably increased PDH activity and the level of its lipoylated E2 subunit. Treatment with BrO (1 mM) and MBrO (0.1 mM) completely inhibited E2 lipoylation and all three dehydrogenases activities. These observations indicate the lack of specific transporters for octanoic acid and most probably also for BrO and LA, which is in agreement with the lack of a LA salvage pathway, as previously suggested for T. brucei. They also indicate that the LA synthesis/protein lipoylation pathway could be a valid target for drug intervention. Moreover, the free LA available in the host would not interfere with such chemotherapeutic treatments.Fil: Vacchina, Paola. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Lambruschi, Daniel AndrĂ©s. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Uttaro, Antonio Domingo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; Argentin