12 research outputs found

    Polyelectrolyte Adsorption on Solid Surfaces: Theoretical Predictions and Experimental Measurements

    Get PDF
    This work utilizes a combination of theory and experiments to explore the adsorption of two different cationic polyelectrolytes onto oppositely charged silica surfaces at pH 9. Both polymers, poly(diallyldimethylammonium chloride), PDADMAC, and poly(4-vinyl N-methylpyridinium iodide), PVNP, are highly charged and highly soluble in water. Another important aspect is that a silica surface carries a relatively high surface charge density at this pH level. This means that we have specifically chosen to investigate adsorption under conditions where electrostatics can be expected to dominate the interactions. Of specific focus in this work is the response of the adsorption to the addition of simple salt (i.e., a process where electrostatics is gradually screened out). Theoretical predictions from a recently developed correlation-corrected classical density functional theory for polyelectrolytes are evaluated by direct quantitative comparisons with corresponding experimental data, as obtained by ellipsometry measurements. We find that, at low concentrations of simple salt, the adsorption increases with ionic strength, reaching a maximum at intermediate levels (about 200 mM). The adsorption then drops but retains a finite level even at very high salt concentrations, indicating the presence of nonelectrostatic contributions to the adsorption. In the theoretical treatment, the strength of this relatively modest but otherwise largely unknown nonelectrostatic surface affinity was estimated by matching predicted and experimental slopes of adsorption curves at high ionic strength. Given these estimates for the nonelectrostatic part, experimental adsorption data are essentially captured with quantitative accuracy by the classical density functional theory

    Polyelectrolyte Adsorption on Solid Surfaces: Theoretical Predictions and Experimental Measurements

    Get PDF
    This work utilizes a combination of theory and experiments to explore the adsorption of two different cationic polyelectrolytes onto oppositely charged silica surfaces at pH 9. Both polymers, poly(diallyldimethylammonium chloride), PDADMAC, and poly(4-vinyl N-methylpyridinium iodide), PVNP, are highly charged and highly soluble in water. Another important aspect is that a silica surface carries a relatively high surface charge density at this pH level. This means that we have specifically chosen to investigate adsorption under conditions where electrostatics can be expected to dominate the interactions. Of specific focus in this work is the response of the adsorption to the addition of simple salt (i.e., a process where electrostatics is gradually screened out). Theoretical predictions from a recently developed correlation-corrected classical density functional theory for polyelectrolytes are evaluated by direct quantitative comparisons with corresponding experimental data, as obtained by ellipsometry measurements. We find that, at low concentrations of simple salt, the adsorption increases with ionic strength, reaching a maximum at intermediate levels (about 200 mM). The adsorption then drops but retains a finite level even at very high salt concentrations, indicating the presence of nonelectrostatic contributions to the adsorption. In the theoretical treatment, the strength of this relatively modest but otherwise largely unknown nonelectrostatic surface affinity was estimated by matching predicted and experimental slopes of adsorption curves at high ionic strength. Given these estimates for the nonelectrostatic part, experimental adsorption data are essentially captured with quantitative accuracy by the classical density functional theory

    Surface Modification of Cellulose-based Materials for Tailoring of Interfacial Interactions

    No full text
    The awareness of our need for a sustainable society has encouraged the search for renewable, high quality materials that can replace oil-based products. This, in combination with increased competition in the forest industry, has stimulated a lot of research into different types of wood-based materials where cellulose-rich fibers are combined with different types of polymers. There is hence a great need to develop efficient fiber modification techniques by which the fibers can be tailored to obtain specific properties. A significant change in properties can be achieved by modifying only the surface of fibers although only a relatively small amount of the total fiber material is modified. In this thesis, several surface modification techniques are presented as new tools to design the properties of different cellulose-based materials. In paper I, thermoresponsive nanocomposites have been assembled from specially designed thermoresponsive block copolymers and nanofibrillated cellulose. The block copolymers have one thermoresponsive block and one cationically charged block which can thus attach the polymer to an oppositely charged fiber/fibril surface. Multilayers were assembled with these block copolymers and nanofibrillated cellulose (NFC) utilizing the Layer-by-Layer (LbL) technique, resulting in thin films with a thermoresponsive behavior. In papers II and III, amphiphilic block copolymers with one less polar high molecular weight block and one cationic block were synthesized for use as a compatibilizer between fibers/fibrils and less polar polymer matrices in composites. The less polar block consisted of polystyrene (PS) in paper II and poly(ɛ-caprolactone) (PCL) in paper III. These polymers self-assemble into cationic micelles in water which can adsorb to oppositely charged surfaces, such as cellulose-based fibers/fibrils, in water under mild conditions and decrease the surface energy of the surface. Atomic force microscopy (AFM) was used to evaluate the adhesive properties of surfaces treated with these compatibilizers which clearly showed the formation of physical entanglements across the interfaces, which are essential for improved interfacial adhesion in the final composites. This modification technique could probably be utilized to make fiber-based composites with better mechanical properties. To be able to better compare this physical modification technique with a more traditional covalent grafting-from approach a method to measure attached amounts of grafted PCL onto cellulose model surfaces was developed in paper IV using a quartz crystal microbalance (QCM). In paper V, multilayers of poly(allylamine hydrochloride) (PAH) and hyaluronic acid (HA) were assembled using the LbL technique and surface structure, build-up and adhesive behavior of the multilayers were evaluated. AFM force measurements showed that a significant adhesion even at long separation distances between two surfaces treated with PAH/HA multilayers could be achieved due to extensive interdiffusion across the interface during contact, leading to significant disentanglement during separation. Fundamental parameters contributing to improved adhesion for this type of system have been evaluated and this knowledge could be used to improve cellulose-based fiber networks and possibly also other types of cellulose-based materials. In paper VI, click chemistry was used to covalently attach dendrons to cellulose surfaces and further modify them with mannose groups to obtain specific interactions with Concanavalin A. The protein interactions were studied at different protein concentrations with a QCM. The multivalent dendronized surface showed a 10-fold increase in sensitivity to the protein compared to a monovalent reference surface demonstrating greatly improved interfacial interactions. This approach could be used to improve interactions at different types of interfaces.QC 20120918</p

    Surface modification of cellulose-based fibres for use in advanced materials

    No full text
    The awareness of our need for a sustainable society has encouraged the search for renewable, high quality materials that can replace oil-based products. This, in combination with increased competition in the forest industry, has stimulated a lot of research into different types of wood-based materials where cellulose-rich fibres are combined with different types of polymers. There is hence a large need to develop efficient fibre modification techniques by which the fibres can be tailored to obtain specific properties. Furthermore, by modifying only the surface of fibers a significant change in properties can be achieved although only a relatively small amount of the total fibre material is modified. The potential impact of a surface modification increases tremendously when nano-sized fibres are used due to the larger interfacial area between the fibres and their surroundings. Interest in smaller building blocks in the nanometer range has continued to grow rapidly in recent years due to both the availability and preparation/synthesis of smaller building blocks and to the discovery of the high performance of these types of nanocomposites. In this thesis, three different types of surface modifications are presented as new tools to design the properties of new novel cellulose-based materials. In the first work, thermoresponsive nanocomposites have been assembled from specially designed thermoresponsive polymers and nanofibrillated cellulose. The polymers have one thermoresponsive block and one cationically charged block which can thus attach the polymer to an oppositely charged fibre/fibril surface. Multilayers were assembled with these polymers and the nanofibrillated cellulose utilizing the layer-by-layer technique, resulting in thin films with thermoresponsive behavior which for example could be used for controlled drug-release applications. In the second work, an amphiphilic block copolymer with one high molecular weight hydrophobic polystyrene block and one cationic block was synthesized for use as a compatibilizer between fibres and hydrophobic polymer matrices in composites. These polymers self-assemble into micelles in water with the hydrophobic part in the core of the micelle and the cationic part in the shell. Due to the cationic charges, these micelles adsorb to oppositely charged surfaces where the hydrophobic parts can be liberated on the surface by a heat treatment, leading to a new, less hydrophilic, surface with a contact angle close to that of pure polystyrene. Atomic force microscopy was used to measure the adhesive properties of a polymer-treated surface using a polystyrene probe at different temperatures and contact times. The adhesion increased with increasing contact time for the treated surfaces, probably due to entanglement between the polystyrene blocks at the treated surface and the probe. The relative increase in adhesion with contact time was higher at the lower temperature whereas the absolute value of the adhesion was higher at the higher temperature, most probably due to a larger molecular contact area. This odification technique could be utilized to make fibrebased composite materials with better mechanical properties. In the third work, click chemistry was used to covalently attach dendrons to cellulose surfaces and further to modify them with mannose groups to obtain specific interactions with  Concanavalin A. The protein interactions were studied at different protein concentrations with a quartz crystal microbalance. The multivalent dendronized surface showed a 10-fold increase in sensitivity to the protein compared to a monovalent reference surface. This could be used to design more sensitive cellulose-based biosensors in the future.Det finns idag en stor insikt av att vi behöver nya miljövÀnliga processer och produkter för att kunna skapa ett lÄngsiktigt hÄllbart samhÀlle. Denna medvetenhet har stimulerat sökandet efter förnyelsebara, högkvalitativa material som kan ersÀtta oljebaserade produkter. I kombination med den ökande konkurrensen inom skogsindustrin, har detta stimulerat forskning inom olika typer av trÀbaserade material dÀr cellulosarika fibrer kombineras med olika typer av polymerer sÄ att vi anvÀnder vÄr förnyelsebara skogsrÄvara i sÄ kallade högvÀrdesprodukter. Det finns dÀrför ett stort behov av utveckling av effektiva tekniker för fibermodifiering dÀr fibrer kan skrÀddarsys för att erhÄlla specifika egenskaper. Genom att endast modifiera fibrernas yta kan dessutom en markant förÀndring i egenskaper erhÄllas genom att endast modifiera en relativt liten del av det totala fibermaterialet. Den potentiella effekten av ytmodifiering ökar dessutom avsevÀrt nÀr cellulosananofibriller anvÀnds, eftersom grÀnsytan mellan fibrillerna och dess omgivning ökar dramatiskt nÀr storleken minskar med flera tiopotenser. Intresset för mindre byggstenar i nanometeromrÄdet har fortsatt att öka snabbt under de senaste Ären, bÄde tack vare tillgÀngligheten och ny teknik för tillverkning/syntes av mindre byggstenar, och insikter av de mycket goda egenskaper som den hÀr typen av nanokompositer besitter. I föreliggande avhandling presenteras tre olika typer av fibermodifiering som kan anvÀndas som nya redskap för att skrÀddarsy egenskaper hos nya cellulosabaserade material. I det första arbetet har termoresponsiva nanokompositer byggts upp frÄn specialtillverkade termoresponsiva polymerer och nanofibrillerad cellulosa. Polymererna har ett block som Àr termoresponsivt samt ett andra block som Àr katjoniskt laddat och dÀrmed kan fÀsta polymeren till en motsatt laddad fiber/fibrillyta. Multiskikt byggdes upp med dessa polymer och den nanofibrillerade cellulosan genom att anvÀnda lager-pÄ-lager tekniken, vilket resulterar i tunna filmer med termoresponsivt beteende som exempelvis skulle kunna anvÀndas för kontrollerad frisÀttning av lÀkemedel. I det andra arbetet har en amfifil block copolymer med ett högmolekulÀrt hydrofobt polystyrenblock och ett katjoniskt block syntetiserats för anvÀndning som kompatibilisator mellan fibrer och hydrofoba polymer matriser i fiber/fibrill förstÀrkta kompositer. Dessa polymerer sjÀlvorganiseras i form av miceller i vatten med den hydrofoba delen i kÀrnan av micellen och den katjoniska delen i skalet. Eftersom micellerna har katjoniska laddningar adsorberar de till motsatt laddade ytor dÀr de hydrofoba delarna kan frigöras pÄ ytan efter en vÀrmebehandling vilket leder till en ny, mindre vattenvÀtbar, yta. Ett atomkraftsmikroskop anvÀndes för att mÀta de adhesiva egenskaperna mellan en polymerbehandlad yta och en polystyrenprob vid olika temperaturer och kontakttider. Adhesionen ökade med kontakttiden för de behandlade ytorna, troligtvis beroende pÄ molekylÀr intrassling mellan polystyrenblock pÄ den behandlade ytan och polystyrenproben. Den relativa adhesionsökningen, med ökad kontakttid, var högre vid den lÀgre temperaturen medan den absoluta adhesionskraften var högre vid den högre temperaturen, vilket troligen beror pÄ en högre molekylÀr konataktyta vid den högre temperaturen. I det tredje arbetet anvÀndes klick-kemi för att kovalent fÀsta dendroner till cellulosaytor och vidare modifiera dem med mannosgrupper för att erhÄlla specifik vÀxelverkan med Concanavalin A. Proteininteraktionerna studerades vid olika proteinkoncentrationer med hjÀlp av en kvartskristallmikrovÄg. Den flervÀrda dendroniserade ytan visade en 10-faldig ökning i kÀnslighet gentemot proteinet jÀmfört med den envÀrda referensytan. Detta skulle kunna anvÀndas för att skrÀddarsy kÀnsligare cellulosabaserade biosensorer i framtiden.QC 2010101

    Surface modification of cellulose-based fibres for use in advanced materials

    No full text
    The awareness of our need for a sustainable society has encouraged the search for renewable, high quality materials that can replace oil-based products. This, in combination with increased competition in the forest industry, has stimulated a lot of research into different types of wood-based materials where cellulose-rich fibres are combined with different types of polymers. There is hence a large need to develop efficient fibre modification techniques by which the fibres can be tailored to obtain specific properties. Furthermore, by modifying only the surface of fibers a significant change in properties can be achieved although only a relatively small amount of the total fibre material is modified. The potential impact of a surface modification increases tremendously when nano-sized fibres are used due to the larger interfacial area between the fibres and their surroundings. Interest in smaller building blocks in the nanometer range has continued to grow rapidly in recent years due to both the availability and preparation/synthesis of smaller building blocks and to the discovery of the high performance of these types of nanocomposites. In this thesis, three different types of surface modifications are presented as new tools to design the properties of new novel cellulose-based materials. In the first work, thermoresponsive nanocomposites have been assembled from specially designed thermoresponsive polymers and nanofibrillated cellulose. The polymers have one thermoresponsive block and one cationically charged block which can thus attach the polymer to an oppositely charged fibre/fibril surface. Multilayers were assembled with these polymers and the nanofibrillated cellulose utilizing the layer-by-layer technique, resulting in thin films with thermoresponsive behavior which for example could be used for controlled drug-release applications. In the second work, an amphiphilic block copolymer with one high molecular weight hydrophobic polystyrene block and one cationic block was synthesized for use as a compatibilizer between fibres and hydrophobic polymer matrices in composites. These polymers self-assemble into micelles in water with the hydrophobic part in the core of the micelle and the cationic part in the shell. Due to the cationic charges, these micelles adsorb to oppositely charged surfaces where the hydrophobic parts can be liberated on the surface by a heat treatment, leading to a new, less hydrophilic, surface with a contact angle close to that of pure polystyrene. Atomic force microscopy was used to measure the adhesive properties of a polymer-treated surface using a polystyrene probe at different temperatures and contact times. The adhesion increased with increasing contact time for the treated surfaces, probably due to entanglement between the polystyrene blocks at the treated surface and the probe. The relative increase in adhesion with contact time was higher at the lower temperature whereas the absolute value of the adhesion was higher at the higher temperature, most probably due to a larger molecular contact area. This odification technique could be utilized to make fibrebased composite materials with better mechanical properties. In the third work, click chemistry was used to covalently attach dendrons to cellulose surfaces and further to modify them with mannose groups to obtain specific interactions with  Concanavalin A. The protein interactions were studied at different protein concentrations with a quartz crystal microbalance. The multivalent dendronized surface showed a 10-fold increase in sensitivity to the protein compared to a monovalent reference surface. This could be used to design more sensitive cellulose-based biosensors in the future.Det finns idag en stor insikt av att vi behöver nya miljövÀnliga processer och produkter för att kunna skapa ett lÄngsiktigt hÄllbart samhÀlle. Denna medvetenhet har stimulerat sökandet efter förnyelsebara, högkvalitativa material som kan ersÀtta oljebaserade produkter. I kombination med den ökande konkurrensen inom skogsindustrin, har detta stimulerat forskning inom olika typer av trÀbaserade material dÀr cellulosarika fibrer kombineras med olika typer av polymerer sÄ att vi anvÀnder vÄr förnyelsebara skogsrÄvara i sÄ kallade högvÀrdesprodukter. Det finns dÀrför ett stort behov av utveckling av effektiva tekniker för fibermodifiering dÀr fibrer kan skrÀddarsys för att erhÄlla specifika egenskaper. Genom att endast modifiera fibrernas yta kan dessutom en markant förÀndring i egenskaper erhÄllas genom att endast modifiera en relativt liten del av det totala fibermaterialet. Den potentiella effekten av ytmodifiering ökar dessutom avsevÀrt nÀr cellulosananofibriller anvÀnds, eftersom grÀnsytan mellan fibrillerna och dess omgivning ökar dramatiskt nÀr storleken minskar med flera tiopotenser. Intresset för mindre byggstenar i nanometeromrÄdet har fortsatt att öka snabbt under de senaste Ären, bÄde tack vare tillgÀngligheten och ny teknik för tillverkning/syntes av mindre byggstenar, och insikter av de mycket goda egenskaper som den hÀr typen av nanokompositer besitter. I föreliggande avhandling presenteras tre olika typer av fibermodifiering som kan anvÀndas som nya redskap för att skrÀddarsy egenskaper hos nya cellulosabaserade material. I det första arbetet har termoresponsiva nanokompositer byggts upp frÄn specialtillverkade termoresponsiva polymerer och nanofibrillerad cellulosa. Polymererna har ett block som Àr termoresponsivt samt ett andra block som Àr katjoniskt laddat och dÀrmed kan fÀsta polymeren till en motsatt laddad fiber/fibrillyta. Multiskikt byggdes upp med dessa polymer och den nanofibrillerade cellulosan genom att anvÀnda lager-pÄ-lager tekniken, vilket resulterar i tunna filmer med termoresponsivt beteende som exempelvis skulle kunna anvÀndas för kontrollerad frisÀttning av lÀkemedel. I det andra arbetet har en amfifil block copolymer med ett högmolekulÀrt hydrofobt polystyrenblock och ett katjoniskt block syntetiserats för anvÀndning som kompatibilisator mellan fibrer och hydrofoba polymer matriser i fiber/fibrill förstÀrkta kompositer. Dessa polymerer sjÀlvorganiseras i form av miceller i vatten med den hydrofoba delen i kÀrnan av micellen och den katjoniska delen i skalet. Eftersom micellerna har katjoniska laddningar adsorberar de till motsatt laddade ytor dÀr de hydrofoba delarna kan frigöras pÄ ytan efter en vÀrmebehandling vilket leder till en ny, mindre vattenvÀtbar, yta. Ett atomkraftsmikroskop anvÀndes för att mÀta de adhesiva egenskaperna mellan en polymerbehandlad yta och en polystyrenprob vid olika temperaturer och kontakttider. Adhesionen ökade med kontakttiden för de behandlade ytorna, troligtvis beroende pÄ molekylÀr intrassling mellan polystyrenblock pÄ den behandlade ytan och polystyrenproben. Den relativa adhesionsökningen, med ökad kontakttid, var högre vid den lÀgre temperaturen medan den absoluta adhesionskraften var högre vid den högre temperaturen, vilket troligen beror pÄ en högre molekylÀr konataktyta vid den högre temperaturen. I det tredje arbetet anvÀndes klick-kemi för att kovalent fÀsta dendroner till cellulosaytor och vidare modifiera dem med mannosgrupper för att erhÄlla specifik vÀxelverkan med Concanavalin A. Proteininteraktionerna studerades vid olika proteinkoncentrationer med hjÀlp av en kvartskristallmikrovÄg. Den flervÀrda dendroniserade ytan visade en 10-faldig ökning i kÀnslighet gentemot proteinet jÀmfört med den envÀrda referensytan. Detta skulle kunna anvÀndas för att skrÀddarsy kÀnsligare cellulosabaserade biosensorer i framtiden.QC 2010101

    Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan

    Get PDF
    Chitosan is widely used in films for packaging applications. Chitosan reinforcement by stiff particles or fibers is usually obtained at the expense of lowered ductility and toughness. Here, chitosan film reinforcement by a new type of native chitin nanofibers is reported. Films are prepared by casting from colloidal suspensions of chitin in dissolved chitosan. The nanocomposite films are chitin nanofiber networks in chitosan matrix. Characterization is carried out by dynamic light scattering, quartz crystal microbalance, field emission scanning electron microscopy, tensile tests and dynamic mechanical analysis. The polymer matrix nanocomposites were produced in volume fractions of 8, 22, and 56% chitin nanofibers. Favorable chitin-chitosan synergy for colloidal dispersion is demonstrated. Also, lowered moisture sorption is observed for the composites, probably due to the favorable chitin-chitosan interface. The highest toughness (area under stress-strain curve) was observed at 8 vol% chitin content. The toughening mechanisms and the need for well-dispersed chitin nanofibers is discussed. Finally, desired structural characteristics of ductile chitin biocomposites are discussed

    Robust and Tailored Wet Adhesion in Biopolymer Thin Films

    No full text
    Model layer-by-layer (LbL) assemblies of poly­(allylamine hydrochloride) (PAH) and hyaluronic acid (HA) were fabricated in order to study their wet adhesive behavior. The film characteristics were investigated to understand the inherent structures during the assembly process. Subsequently, the adhesion of these systems was evaluated to understand the correlation between the structure of the film and the energy required to separate these LbL assemblies. We describe how the conditions of the LbL fabrication can be utilized to control the adhesion between films. The characteristics of the film formation are examined in the absence and presence of salt during the film formation. The dependence on contact time and LbL film thickness on the critical pull-off force and work of adhesion are discussed. Specifically, by introducing sodium chloride (NaCl) in the assembly process, the pull-off forces can be increased by a factor of 10 and the work of adhesion by 2 orders of magnitude. Adjusting both the contact time and the film thickness enables control of the adhesive properties within these limits. Based on these results, we discuss how the fabrication procedure can create tailored adhesive interfaces with properties surpassing analogous systems found in nature

    Bioinspired and Highly Oriented Clay Nanocomposites with a Xyloglucan Biopolymer Matrix: Extending the Range of Mechanical and Barrier Properties

    No full text
    The development of clay bionanocomposites requires processing routes with nanostructural control. Moreover, moisture durability is a concern with water-soluble biopolymers. Here, oriented bionanocomposite coatings with strong in-plane orientation of clay platelets are for the first time prepared by continuous water-based processing. Montmorillonite (MTM) and a “new” unmodified biological polymer (xyloglucan (XG)) are combined. The resulting nanocomposites are characterized by FE-SEM, TEM, and XRD. XG adsorption on MTM is measured by quartz crystal microbalance analysis. Mechanical and gas barrier properties are measured, also at high relative humidity. The reinforcement effects are modeled. XG dimensions in composites are estimated using atomistic simulations. The nanostructure shows highly oriented and intercalated clay platelets. The reinforcement efficiency and effects on barrier properties are remarkable and are likely to be due to highly oriented and well-dispersed MTM and strong XG–MTM interactions. Properties are well preserved in humid conditions and the reasons for this are discussed

    Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers Based on PCL and Quaternized PDMAEMA

    No full text
    In this work, the objective was to synthesize and evaluate the properties of a compatibilizer based on poly­(Δ-caprolactone) aimed at tuning the surface properties of cellulose fibers used in fiber-reinforced biocomposites. The compatibilizer is an amphiphilic block copolymer consisting of two different blocks which have different functions. One block is cationic, quaternized poly­(2-(dimethylamino)­ethyl methacrylate) (PDMAEMA) and can therefore electrostatically attach to anionic reinforcing materials such as cellulose-based fibers/fibrils under mild conditions in water. The other block consists of poly­(Δ-caprolactone) (PCL) which can decrease the surface energy of a cellulose surface and also has the ability to form physical entanglements with a PCL surface thereby improving the interfacial adhesion. Atom Transfer Radical Polymerization (ATRP) and Ring-Opening Polymerization (ROP) were used to synthesize three block copolymers with the same length of the cationic PDMAEMA block but with different lengths of the PCL blocks. The block copolymers form cationic micelles in water which can adsorb to anionic surfaces such as silicon oxide and cellulose-model surfaces. After heat treatment, the contact angles of water on the treated surfaces increased significantly, and contact angles close to those of pure PCL were obtained for the block copolymers with longer PCL blocks. AFM force measurements showed a clear entangling behavior between the block copolymers and a PCL surface at about 60 °C, which is important for the formation of an adhesive interface in the final biocomposites. This demonstrates that this type of amphiphilic block copolymer can be used to improve interactions in biocomposites between anionic reinforcing materials such as cellulose-based fibers/fibrils and less polar matrices such as PCL
    corecore