262 research outputs found
DNp73 improves generation efficiency of human induced pluripotent stem cells
<p>Abstract</p> <p>Background</p> <p>Recent studies have found that p53 and its' associated cell cycle pathways are major inhibitors of human induced pluripotent stem (iPS) cell generation. In the same family as p53 is p73, which shares sequence similarities with p53. However, p73 also has distinct properties of its own, such as two alternative promoters to express transactivation of p73 (TAp73) and N terminal deleted p73 (DNp73). Functionally, TAp73 acts similarly to p53 in tumor suppression. However, DNp73, on the other hand acts as an oncogene to suppress p53 and p73 induced apoptosis. Therefore, how can p73 have opposing roles in human iPS cell generation?</p> <p>Results</p> <p>Transcription factors, Oct4, Sox2, Klf4 and cMyc (4TF, Yamanaka factors) are used as basal conditions to generate iPS cells. In addition, the factor of DNp73(actually alpha splicing DNp73, DNp73α) is used to generate iPS cells. The experiment found that the addition of DNp73 gene increases human iPS cell generation efficiency by 12.6 folds in comparison to human fibroblast cells transduced with only the basal conditions. Also, iPS cells generated with DNp73 expression are more resistant to <it>in vitro </it>and <it>in vivo </it>differentiation.</p> <p>Conclusions</p> <p>This study found DNp73, a family member of p53, is also involved in the human iPS cell generation. Specifically, that the involvement of DNp73 generates iPS cells that are more resistant to <it>in vitro </it>and <it>in vivo </it>differentiation. Therefore, this data may prove to be useful in future developmental studies and cancer researches.</p
Dynamic single cell imaging of direct reprogramming reveals an early specifying event
available in PMC 2010 November 1.The study of induced pluripotency often relies on experimental approaches that average measurements across a large population of cells, the majority of which do not become pluripotent. Here we used high-resolution, time-lapse imaging to trace the reprogramming process over 2 weeks from single mouse embryonic fibroblasts (MEFs) to pluripotency factor–positive colonies. This enabled us to calculate a normalized cell-of-origin reprogramming efficiency that takes into account only the initial MEFs that respond to form reprogrammed colonies rather than the larger number of final colonies. Furthermore, this retrospective analysis revealed that successfully reprogramming cells undergo a rapid shift in their proliferative rate that coincides with a reduction in cellular area. This event occurs as early as the first cell division and with similar kinetics in all cells that form induced pluripotent stem (iPS) cell colonies. These data contribute to the theoretical modeling of reprogramming and suggest that certain parts of the reprogramming process follow defined rather than stochastic steps.Burroughs Wellcome Fund (Career Award at the Scientific Interface)Pew Charitable TrustsMassachusetts Life Sciences Center (New Investigator grant)Broad Institute (Investigator of the Merkin Foundation for Stem Cell Research)Howard Hughes Medical Institute (Early Career Scientist)Alfred P. Sloan FoundationNational Institutes of Health (U.S.) (Pioneer Award
Differential influence of vemurafenib and dabrafenib on patients' lymphocytes despite similar clinical efficacy in melanoma
In this study, we demonstrate that vemurafenib but not dabrafenib reduces peripheral lymphocyte counts in melanoma patients while both agents show similar clinical efficacy. Within the lymphocyte compartment, vemurafenib selectively decreases circulating CD4+ T cells and changes their phenotype and function. This indicates that selective BRAFi need to be assessed individually for immunomodulatory effects, especially, when planning combinations with immunotherapie
Studying Brugada syndrome with an SCN1B variants in human-induced pluripotent stem cell-derived cardiomyocytes
BACKGROUND: Among rare channelopathies BrS patients are at high risk of sudden cardiac death (SCD). SCN5A mutations are found in a quarter of patients. Other rare gene mutations including SCN1B have been implicated to BrS. Studying the human cellular phenotype of BrS associated with rare gene mutation remains lacking. OBJECTIVES: We sought to study the cellular phenotype of BrS with the SCN1B gene variants using human-induced pluripotent stem cell (hiPSCs)–derived cardiomyocytes (hiPSC-CMs). METHODS AND RESULTS: A BrS patient suffering from recurrent syncope harboring a two variants (c.629T > C and c.637C > A) in SCN1B, which encodes the function-modifying sodium channel beta1 subunit, and three independent healthy subjects were recruited and their skin biopsies were used to generate hiPSCs, which were differentiated into cardiomyocytes (hiPSC-CMs) for studying the cellular electrophysiology. A significantly reduced peak and late sodium channel current (I(Na)) and a shift of activation curve to more positive potential as well as a shift of inactivation curve to more negative potential were detected in hiPSC-CMs of the BrS patient, indicating that the SCN1B variants impact the function of sodium channels in cardiomyocytes. The reduced I(Na) led to a reduction of amplitude (APA) and upstroke velocity (V(max)) of action potentials. Ajmaline, a sodium channel blocker, showed a stronger effect on APA and Vmax in BrS cells as compared to cells from healthy donors. Furthermore, carbachol was able to increase arrhythmia events and the beating frequency in BrS. CONCLUSION: Our hiPSC-CMs from a BrS-patient with two variants in SCN1B recapitulated some key phenotypic features of BrS and can provide a platform for studies on BrS with SCN1B variants
Two Factor Reprogramming of Human Neural Stem Cells into Pluripotency
BACKGROUND:Reprogramming human somatic cells to pluripotency represents a valuable resource for the development of in vitro based models for human disease and holds tremendous potential for deriving patient-specific pluripotent stem cells. Recently, mouse neural stem cells (NSCs) have been shown capable of reprogramming into a pluripotent state by forced expression of Oct3/4 and Klf4; however it has been unknown whether this same strategy could apply to human NSCs, which would result in more relevant pluripotent stem cells for modeling human disease. METHODOLOGY AND PRINCIPAL FINDINGS:Here, we show that OCT3/4 and KLF4 are indeed sufficient to induce pluripotency from human NSCs within a two week time frame and are molecularly indistinguishable from human ES cells. Furthermore, human NSC-derived pluripotent stem cells can differentiate into all three germ lineages both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE:We propose that human NSCs represent an attractive source of cells for producing human iPS cells since they only require two factors, obviating the need for c-MYC, for induction into pluripotency. Thus, in vitro human disease models could be generated from iPS cells derived from human NSCs
Immune Checkpoint Blockade for Metastatic Uveal Melanoma: Re-Induction following Resistance or Toxicity
Re-induction with immune checkpoint blockade (ICB) needs to be considered in many
patients with uveal melanoma (UM) due to limited systemic treatment options. Here, we provide
hitherto the first analysis of ICB re-induction in UM. A total of 177 patients with metastatic UM
treated with ICB were included from German skin cancer centers and the German national skin
cancer registry (ADOReg). To investigate the impact of ICB re-induction, two cohorts were compared:
patients who received at least one ICB re-induction (cohort A, n = 52) versus those who received only
one treatment line of ICB (cohort B, n = 125). In cohort A, a transient benefit of overall survival (OS)
was observed at 6 and 12 months after the treatment start of ICB. There was no significant difference
in OS between both groups (p = 0.1) with a median OS of 16.2 months (cohort A, 95% CI: 11.1–23.8)
versus 9.4 months (cohort B, 95% CI: 6.1–14.9). Patients receiving re-induction of ICB (cohort A) had
similar response rates compared to those receiving ICB once. Re-induction of ICB may yield a clinical
benefit for a small subgroup of patients even after resistance or development of toxicities
Derivation of Induced Pluripotent Stem Cells from Human Peripheral Blood T Lymphocytes
Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of personalized in vitro disease models, genomic health analyses, and autologous cell therapy. Here we describe the generation of T lymphocyte-derived iPSCs from small, clinically advantageous volumes of non-mobilized peripheral blood. These T-cell derived iPSCs (“TiPS”) retain a normal karyotype and genetic identity to the donor. They share common characteristics with human embryonic stem cells (hESCs) with respect to morphology, pluripotency-associated marker expression and capacity to generate neurons, cardiomyocytes, and hematopoietic progenitor cells. Additionally, they retain their characteristic T-cell receptor (TCR) gene rearrangements, a property which could be exploited for iPSC clone tracking and T-cell development studies. Reprogramming T-cells procured in a minimally invasive manner can be used to characterize and expand donor specific iPSCs, and control their differentiation into specific lineages
Reversal of aberrant cancer methylome and transcriptome upon direct reprogramming of lung cancer cells
10.1038/srep00592Scientific Reports2
p53 Interaction with JMJD3 Results in Its Nuclear Distribution during Mouse Neural Stem Cell Differentiation
Conserved elements of apoptosis are also integral components of cellular differentiation. In this regard, p53 is involved in neurogenesis, being required for neurite outgrowth in primary neurons and for axonal regeneration in mice. Interestingly, demethylases regulate p53 activity and its interaction with co-activators by acting on non-histone proteins. In addition, the histone H3 lysine 27-specific demethylase JMJD3 induces ARF expression, thereby stabilizing p53 in mouse embryonic fibroblasts. We hypothesized that p53 interacts with key regulators of neurogenesis to redirect stem cells to differentiation, as an alternative to cell death. Specifically, we investigated the potential cross-talk between p53 and JMJD3 during mouse neural stem cell (NSC) differentiation. Our results demonstrated that JMJD3 mRNA and protein levels were increased early in mouse NSC differentiation, when JMJD3 activity was readily detected. Importantly, modulation of JMJD3 in NSCs resulted in changes of total p53 protein, coincident with increased ARF mRNA and protein expression. ChIP analysis revealed that JMJD3 was present at the promoter and exon 1 regions of ARF during neural differentiation, although without changes in H3K27me3. Immunoprecipitation assays demonstrated a direct interaction between p53 and JMJD3, independent of the C-terminal region of JMJD3, and modulation of p53 methylation by JMJD3-demethylase activity. Finally, transfection of mutant JMJD3 showed that the demethylase activity of JMJD3 was crucial in regulating p53 cellular distribution and function. In conclusion, JMJD3 induces p53 stabilization in mouse NSCs through ARF-dependent mechanisms, directly interacts with p53 and, importantly, causes nuclear accumulation of p53. This suggests that JMJD3 and p53 act in a common pathway during neurogenesis
- …