11 research outputs found

    Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features.

    Get PDF
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic "feature" sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law's features, gray-level co-occurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≥0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features' redundancy

    A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis

    Get PDF
    Aims: Pulmonary arterial hypertension (PAH) is a progressive condition with high mortality. Quantitative cardiovascular magnetic resonance (CMR) imaging metrics in PAH target individual cardiac structures and have diagnostic and prognostic utility but are challenging to acquire. The primary aim of this study was to develop and test a tensor-based machine learning approach to holistically identify diagnostic features in PAH using CMR, and secondarily, visualize and interpret key discriminative features associated with PAH. Methods and results: Consecutive treatment naive patients with PAH or no evidence of pulmonary hypertension (PH), undergoing CMR and right heart catheterization within 48 h, were identified from the ASPIRE registry. A tensor-based machine learning approach, multilinear subspace learning, was developed and the diagnostic accuracy of this approach was compared with standard CMR measurements. Two hundred and twenty patients were identified: 150 with PAH and 70 with no PH. The diagnostic accuracy of the approach was high as assessed by area under the curve at receiver operating characteristic analysis (P < 0.001): 0.92 for PAH, slightly higher than standard CMR metrics. Moreover, establishing the diagnosis using the approach was less time-consuming, being achieved within 10 s. Learnt features were visualized in feature maps with correspondence to cardiac phases, confirming known and also identifying potentially new diagnostic features in PAH. Conclusion: A tensor-based machine learning approach has been developed and applied to CMR. High diagnostic accuracy has been shown for PAH diagnosis and new learnt features were visualized with diagnostic potential

    Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements

    Get PDF
    Background: Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. Methods: A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). Results: All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 ± 3.5 cm2, 91.2 ± 4.5 cm2 and 93.2 ± 3.2 cm2, respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 ± 3.9 cm2, 87.0 ± 5.8 cm2 and 91.8 ± 4.8 cm2. Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. Conclusion: Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality

    Caregiver burden and proxy-reported outcomes of people without natural speech: a cross-sectional survey study

    No full text
    Objective To examine interrelations between care-related burden on informal caregivers and their proxy assessments of outcomes in people without natural speech. Design A cross-sectional survey. Setting Data were collected in January 2019 from a postal survey of informal caregivers of people without natural speech who are insured by a large regional health insurance company in the German federal state of Lower Saxony. Participants n=714 informal caregivers of people without natural speech of all ages and with various underlying disabilities were identified and contacted via the health insurance company. Data from n=165 informal caregivers (26.4%) were obtained. Main outcome measures Caregiver burden (self-reported, Burden Scale for Family Caregivers), pragmatic communication skills of people without natural speech (proxy report, self-developed), health-related quality of life of people without natural speech (proxy report, DISABKIDS Chronic Generic Measure - DCGM-12) and functioning of people without natural speech (proxy report, WHO Disability Assessment Schedule 2.0). Results The analyses revealed significant associations between caregiver burden on the one hand and both proxy-reported health-related quality of life (b=-0.422; p <= 0.001) and functioning (b=0.521; p <= 0.001) on the other. Adding caregiver burden to the regression model leads to a substantial increase in explained variance in functioning (R-2 Model 1=0.349; R-2 Model 2=0.575) as well as in health-related quality of life (R-2 Model 1=0.292; R-2 Model 2=0.460). Conclusions Caregiver burden should be considered an important determinant when informal caregivers report outcomes on behalf of people without natural speech. Longitudinal studies are recommended to better understand the burdens experienced by caregivers when supporting people without natural speech

    Computed Tomography Features of Lung Structure Have Utility for Differentiating Malignant and Benign Pulmonary Nodules

    No full text
    Background: Chronic obstructive pulmonary disease (COPD) is a known co-morbidity for lung cancer independent of smoking history. Quantitative computed tomography (qCT) imaging features related to COPD have shown promise in the assessment of lung cancer risk. We hypothesize that qCT features from the lung, lobe, and airway tree related to the location of the pulmonary nodule can be used to provide informative malignancy risk assessment. Methods: One-hundred and eighty-three qCT features were extracted from 278 subjects with a solitary pulmonary nodule of known diagnosis (71 malignant, 207 benign). These included histogram and airway characteristics of the lungs, lobe, and segmental paths. Performances of the least absolute shrinkage and selection operator (LASSO) regression analysis and an ensemble of neural networks (ENN) were compared for feature set selection and classification on a testing cohort of 49 additional subjects (15 malignant, 34 benign). Results: TheThe LASSO and ENN methods produced different features sets for classification with LASSO selecting fewer (7) qCT features than the ENN (17). The LASSO model with the highest performing training AUC (0.80) incorporated automatically extracted features and reader-measured nodule diameter with a testing AUC of 0.62. The ENN model with the highest performing AUC (0.77) also incorporated qCT and reader diameter but maintained higher testing performance (AUC = 0.79). Conclusions: Automatically extracted qCT imaging features of the lung can be informative of the differentiation between subjects with malignant pulmonary nodules and those with benign pulmonary nodules, without requiring nodule segmentation and analysis

    Severe pulmonary hypertension associated with lung disease is characterised by a loss of small pulmonary vessels on quantitative computed tomography

    No full text
    Background Pulmonary hypertension (PH) in patients with chronic lung disease (CLD) predicts reduced functional status, clinical worsening and increased mortality, with patients with severe PH-CLD (≥35 mmHg) having a significantly worse prognosis than mild to moderate PH-CLD (21–34 mmHg). The aim of this cross-sectional study was to assess the association between computed tomography (CT)-derived quantitative pulmonary vessel volume, PH severity and disease aetiology in CLD. Methods Treatment-naïve patients with CLD who underwent CT pulmonary angiography, lung function testing and right heart catheterisation were identified from the ASPIRE registry between October 2012 and July 2018. Quantitative assessments of total pulmonary vessel and small pulmonary vessel volume were performed. Results 90 patients had PH-CLD including 44 associated with COPD/emphysema and 46 with interstitial lung disease (ILD). Patients with severe PH-CLD (n=40) had lower small pulmonary vessel volume compared to patients with mild to moderate PH-CLD (n=50). Patients with PH-ILD had significantly reduced small pulmonary blood vessel volume, compared to PH-COPD/emphysema. Higher mortality was identified in patients with lower small pulmonary vessel volume. Conclusion Patients with severe PH-CLD, regardless of aetiology, have lower small pulmonary vessel volume compared to patients with mild–moderate PH-CLD, and this is associated with a higher mortality. Whether pulmonary vessel changes quantified by CT are a marker of remodelling of the distal pulmonary vasculature requires further study

    Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT

    No full text
    PURPOSE: Computed tomography (CT) is an effective method for detecting and characterizing lung nodules in vivo. With the growing use of chest CT, the detection frequency of lung nodules is increasing. Noninvasive methods to distinguish malignant from benign nodules have the potential to decrease the clinical burden, risk, and cost involved in follow-up procedures on the large number of false-positive lesions detected. This study examined the benefit of including perinodular parenchymal features in machine learning (ML) tools for pulmonary nodule assessment. METHODS: Lung nodule cases with pathology confirmed diagnosis (74 malignant, 289 benign) were used to extract quantitative imaging characteristics from computed tomography scans of the nodule and perinodular parenchyma tissue. A ML tool development pipeline was employed using k-medoids clustering and information theory to determine efficient predictor sets for different amounts of parenchyma inclusion and build an artificial neural network classifier. The resulting ML tool was validated using an independent cohort (50 malignant, 50 benign). RESULTS: The inclusion of parenchymal imaging features improved the performance of the ML tool over exclusively nodular features (P \u3c 0.01). The best performing ML tool included features derived from nodule diameter-based surrounding parenchyma tissue quartile bands. We demonstrate similar high-performance values on the independent validation cohort (AUC-ROC = 0.965). A comparison using the independent validation cohort with the Fleischner pulmonary nodule follow-up guidelines demonstrated a theoretical reduction in recommended follow-up imaging and procedures. CONCLUSIONS: Radiomic features extracted from the parenchyma surrounding lung nodules contain valid signals with spatial relevance for the task of lung cancer risk classification. Through standardization of feature extraction regions from the parenchyma, ML tool validation performance of 100% sensitivity and 96% specificity was achieved

    Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features

    No full text
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic “feature” sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law\u27s features, gray-level co-occurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≥0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features\u27 redundancy

    Radiomics of Lung Nodules: A Multi- Institutional Study of Robustness and Agreement of Quantitative Imaging Features

    No full text
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic &quot;feature&quot; sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law&apos;s features, gray-level cooccurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of Ő†0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features&apos; redundancy
    corecore