302 research outputs found
Claudins in intestines
Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases
The Effects of Three Kinds of Influence upon the Moral Judgments of Objective and Subjective Boys and Girls
Supplementary data for the article: Chen, Q.; Utech, S.; Chen, D.; Prodanovic, R.; Lin, J.-M.; Weitz, D. A. Controlled Assembly of Heterotypic Cells in a Core-Shell Scaffold: Organ in a Droplet. Lab on a Chip 2016, 16 (8), 1346–1349. https://doi.org/10.1039/c6lc00231e
Supplementary material for: [https://doi.org/10.1039/c6lc00231e]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/1917]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/2820
Supplementary data for article: Utech, S.; Prodanovic, R.; Mao, A. S.; Ostafe, R.; Mooney, D. J.; Weitz, D. A. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Advanced Healthcare Materials 2015, 4 (11), 1628–1633. https://doi.org/10.1002/adhm.201500021
Supporting information for: [https://doi.org/10.1002/adhm.201500021]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/1751]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/2785
The role of inflammation in epilepsy.
Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis
Supplementary data for article: Utech, S.; Prodanovic, R.; Mao, A. S.; Ostafe, R.; Mooney, D. J.; Weitz, D. A. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Advanced Healthcare Materials 2015, 4 (11), 1628–1633. https://doi.org/10.1002/adhm.201500021
Supporting information for: [https://doi.org/10.1002/adhm.201500021]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/1751]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/2785
Persistent cognitive slowing in post-COVID patients: longitudinal study over 6 months
Abstract Background Fatigue is a frequent and one of the most debilitating symptoms in post-COVID syndrome (PCS). Recently, we proposed that fatigue is caused by hypoactivity of the brain’s arousal network and reflected by a reduction of cognitive processing speed. However, it is unclear whether cognitive slowing is revealed by standard neuropsychological tests, represents a selective deficit, and how it develops over time. Objectives This prospective study assesses whether PCS patients show deficits particularly in tests relying on processing speed and provides the first longitudinal assessment focusing on processing speed in PCS patients. Methods Eighty-eight PCS patients with cognitive complaints and 50 matched healthy controls underwent neuropsychological assessment. Seventy-seven patients were subsequently assessed at 6-month follow-up. The Test for Attentional Performance measured tonic alertness as primary study outcome and additional attentional functions. The Neuropsychological Assessment Battery evaluated all key cognitive domains. Results Patients showed cognitive slowing indicated by longer reaction times compared to control participants ( r = 0.51, p < 0.001) in a simple-response tonic alertness task and in all more complex tasks requiring speeded performance. Reduced alertness correlated with higher fatigue ( r = − 0.408, p < 0.001). Alertness dysfunction remained unchanged at 6-month follow-up ( p = 0.240) and the same was true for most attention tasks and cognitive domains. Conclusion Hypoarousal is a core deficit in PCS which becomes evident as a selective decrease of processing speed observed in standard neuropsychological tests. This core deficit persists without any signs of amelioration over a 6-month period of time
Long COVID is associated with severe cognitive slowing: a multicentre cross-sectional study
Background
COVID-19 survivors may experience a wide range of chronic cognitive symptoms for months or years as part of post-COVID-19 conditions (PCC). To date, there is no definitive objective cognitive marker for PCC. We hypothesised that a key common deficit in people with PCC might be generalised cognitive slowing.
Methods
To examine cognitive slowing, patients with PCC completed two short web-based cognitive tasks, Simple Reaction Time (SRT) and Number Vigilance Test (NVT). 270 patients diagnosed with PCC at two different clinics in UK and Germany were compared to two control groups: individuals who contracted COVID-19 before but did not experience PCC after recovery (No-PCC group) and uninfected individuals (No-COVID group). All patients with PCC completed the study between May 18, 2021 and July 4, 2023 in Jena University Hospital, Jena, Germany and Long COVID clinic, Oxford, UK.
Findings
We identified pronounced cognitive slowing in patients with PCC, which distinguished them from age-matched healthy individuals who previously had symptomatic COVID-19 but did not manifest PCC. Cognitive slowing was evident even on a 30-s task measuring simple reaction time (SRT), with patients with PCC responding to stimuli ∼3 standard deviations slower than healthy controls. 53.5% of patients with PCC's response speed was slower than 2 standard deviations from the control mean, indicating a high prevalence of cognitive slowing in PCC. This finding was replicated across two clinic samples in Germany and the UK. Comorbidities such as fatigue, depression, anxiety, sleep disturbance, and post-traumatic stress disorder did not account for the extent of cognitive slowing in patients with PCC. Furthermore, cognitive slowing on the SRT was highly correlated with the poor performance of patients with PCC on the NVT measure of sustained attention.
Interpretation
Together, these results robustly demonstrate pronounced cognitive slowing in people with PCC, which distinguishes them from age-matched healthy individuals who previously had symptomatic COVID-19 but did not manifest PCC. This might be an important factor contributing to some of the cognitive impairments reported in patients with PCC.
Funding
Wellcome Trust (206330/Z/17/Z), NIHR Oxford Health Biomedical Research Centre, the Thüringer Aufbaubank (2021 FGI 0060), German Forschungsgemeinschaft (DFG, FI 1424/2-1) and the Horizon 2020 Framework Programme of the European Union (ITN SmartAge, H2020-MSCA-ITN-2019-859890)
Recommended from our members
Deterministic encapsulation of single cells in thin tunable microgels for niche modeling and therapeutic delivery
Existing techniques to encapsulate cells into microscale hydrogels generally yield high polymer-to-cell ratios and lack control over the hydrogel’s mechanical properties1. Here, we report a microfluidic-based method for encapsulating single cells in a ~6 micron layer of alginate that increases the proportion of cell-containing microgels by 10-fold, with encapsulation efficiencies over 90%. We show that in vitro cell viability was maintained over a three-day period, that the microgels are mechanically tractable, and that for microscale cell assemblages of encapsulated marrow stromal cells cultured in microwells, osteogenic differentiation of encapsulated cells depends on gel stiffness and cell density. We also show that intravenous injection of singly-encapsulated marrow stromal cells into mice delays clearance kinetics and sustains donor-derived soluble factors in vivo. The encapsulation of single cells in tunable hydrogels should find use in a variety of tissue engineering and regenerative medicine applications
- …
