31 research outputs found

    Gate Electrodes Enable Tunable Nanofluidic Particle Traps

    Full text link
    The ability to control the location of nanoscale objects in liquids is essential for fundamental and applied research from nanofluidics to molecular biology. To overcome their random Brownian motion, the electrostatic fluidic trap creates local minima in potential energy by shaping electrostatic interactions with a tailored wall topography. However, this strategy is inherently static -- once fabricated the potential wells cannot be modulated. Here, we propose and experimentally demonstrate that such a trap can be controlled through a buried gate electrode.We measure changes in the average escape times of nanoparticles from the traps to quantify the induced modulations of 0.7k_\rm{B}T in potential energy and 50 mV in surface potential. Finally, we summarize the mechanism in a parameter-free predictive model, including surface chemistry and electrostatic fringing, that reproduces the experimental results. Our findings open a route towards real-time controllable nanoparticle traps

    Consanguinity and pregnancy outcomes in a multi-ethnic, metropolitan European population

    Get PDF
    Objective: The aim of the present study was to assess the risk of major anomalies in the offspring of consanguineous couples, including data on the prenatal situation. Methods: Over 20years (1993-2012), 35391 fetuses were examined by prenatal sonography. In 675 cases (1.9%), parents were consanguineous, with 307 couples (45.5%) related as first cousins, 368 couples (54.5%) beyond first cousins. Detailed information was retrieved on 31710 (89.6%) fetuses, (consanguineous 568: 1.8%). Results: Overall prevalence of major anomalies among fetuses with non-consanguineous parents was 2.9% (consanguineous, 10.9%; first cousins, 12.4%; beyond first cousins, 6.5%). Adjusting the overall numbers for cases having been referred because of a previous index case, the prevalences were 2.8% (non-consanguineous) and 6.1% (consanguineous) (first cousin, 8.5%; beyond first cousin, 3.9%). Further adjustment for differential rates of trisomic pregnancies indicated 2.0%/5.9% congenital anomalies (non-consanguineous/consanguineous groups), that is, a consanguinity-associated excess of 3.9%, 6.1% in first cousin progeny and 1.9% beyond first cousin. Conclusions: The prevalence of major fetal anomalies associated with consanguinity is higher than in evaluations based only on postnatal life. It is important that this information is made available in genetic counselling programmes, especially in multi-ethnic and multi-religious communities, to enable couples to make informed decisions

    The impact of tumor metabolic activity assessed by 18^{18}F-FET amino acid PET imaging in particle radiotherapy of high-grade glioma patients

    Get PDF
    Selective uptake of (18)F-fluoro-ethyl-tyrosine (18^{18}F-FET) is used in high-grade glioma (HGG) to assess tumor metabolic activity via positron emission tomography (PET). We aim to investigate its value for target volume definition, as a prognosticator, and associations with whole-blood transcriptome liquid biopsy (WBT lbx) for which we recently reported feasibility to mirror tumor characteristics and response to particle irradiation in recurrent HGG (rHGG)

    DNA-Methylome based Tumor Hypoxia Classifier Identifies HPV-negative Head & Neck Cancer Patients at Risk for Locoregional Recurrence After Primary Radiochemotherapy

    Full text link
    BACKGROUND Tumor hypoxia is a paradigmatic negative prognosticator of treatment resistance in Head and Neck Squamous Cell Carcinoma (HNSCC). The lack of robust and reliable hypoxia classifiers limits the adaptation of stratified therapies. We hypothesized that the tumor DNA methylation landscape might indicate epigenetic reprogramming induced by chronic intratumoral hypoxia. METHODS A DNA methylome-based tumor hypoxia classifier (Hypoxia-M) was trained in the TCGA-HNSCC cohort based on matched assignments using gene expression-based signatures of hypoxia (Hypoxia-GES). Hypoxia-M was validated in a multicenter DKTK-ROG trial consisting of Human Papilloma Virus (HPV)-negative HNSCC patients treated with primary radiochemotherapy (RCHT). RESULTS While hypoxia-GSEs failed to stratify patients in the DKTK-ROG, Hypoxia-M was independently prognostic for local recurrence (LR, HR=4.3, p=0.001) and overall survival (OS, HR=2.34, p=0.03) but not distant metastasis (DM) after RCHT in the both cohorts. Hypoxia-M status was inversely associated with CD8 T-cells infiltration in both cohorts. Hypoxia-M was further prognostic in the TCGA-PanCancer cohort (HR=1.83, p=0.04), underscoring the breadth of this classifier for predicting tumor hypoxia status. CONCLUSIONS Our findings highlight an unexplored avenue for DNA Methylation-based classifiers as biomarkers of tumoral hypoxia for identifying high-risk features in patients with HNSCC tumors. TRIAL REGISTRATION Retrospective observational study from the German Cancer Consortium (DKTK-ROG), not interventional

    Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials

    Get PDF
    While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. However, of all recent animals, only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e., biosilicification) hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometers to meters. Spicules lend structural stability to the sponge body, deter predators, and transmit light similar to optic fibers. This peculiar phenomenon has been comprehensively studied in recent years and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nanostructured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) or micro-optics (in vitro synthesis of light waveguides) with promising results

    Integrin-functionalized artificial membranes as test platforms for monitoring small integrin ligand binding by surface plasmon-enhanced fluorescence spectroscopy

    No full text
    The design and synthesis of molecularly or supramolecularly defined interfacial architectures have seen in recent years a remarkable growth of interest and scientific research activities for various reasons. On the one hand, it is generally believed that the construction of an interactive interface between the living world of cells, tissue, or whole organisms and the (inorganic or organic) materials world of technical devices such as implants or medical parts requires proper construction and structural (and functional) control of this organism–machine interface. It is still the very beginning of generating a better understanding of what is needed to make an organism tolerate implants, to guarantee bidirectional communication between microelectronic devices and living tissue, or to simply construct interactive biocompatibility of surfaces in general. This exhaustive book lucidly describes the design, synthesis, assembly and characterization, and bio-(medical) applications of interfacial layers on solid substrates with molecularly or supramolecularly controlled architectures. Experts in the field share their contributions that have been developed in recent years

    An experimental comparison of respiration measuring techniques in fermenters and shake flask : exhaust gas analyzer vs. RAMOS device vs. respirometer

    Get PDF
    The efficiency of Simmentaler cross (SX), Bonsmara cross (BX), Afrikaner (AF) and Nguni (NG) cowherds to produce weaner calves under natural sweetveld conditions was investigated. The respective cowherds were selected to differ with regard to frame size (SX > BX > AF > NG). The AF cows, young (13 to 15 months old) heifers and herd had significantly lower pregnancy rates than the SX, BX and NG cows, young heifers and herds. The weaning rate for NG was significantly higher (15%) than SX, and although not significant, it was still 5 and 8% respectively higher than BX and AF. Weaning weight and pre-weaning growth parameters differed significantly between breed types (SX > BX > AF > NG). Cow efficiency was significantly lower for the AF cows than for the SX, BX and NG cows. The NG herd was more efficient than the other three herds, while the AF herd was the least efficient. Differences in herd efficiency were mainly due to differences in the reproduction rates of the respective herds. The reproduction and calf survival rates were the most important production traits that affected herd efficiency. Management practices should be adapted to maximize the reproduction rate of the females, including the young heifers, to maximise herd efficiency
    corecore