54 research outputs found

    Treatment of malignant peripheral nerve sheath tumors in pediatric NF1 disease

    Get PDF
    Background: Malignant peripheral nerve sheath tumors (MPNSTs) are rare yet highly aggressive soft tissue sarcomas. Children with neurofibromatosis type 1 (NF1) have a 10% lifetime risk for development of MPNST. Prognosis remains poor and survival seems worse for NF1 patients. Methods: This narrative review highlights current practices and pitfalls in the management of MPNST in pediatric NF1 patients. Results: Preoperative diagnostics can be challenging, but PET scans have shown to be useful tools. More recently, functional MRI holds promise as well. Surgery remains the mainstay treatment for these patients, but careful planning is needed to minimize postoperative morbidity. Functional reconstructions can play a role in improving functional status. Radiotherapy can be administered to enhance local control in selected cases, but care should be taken to minimize radiation effects as well as reduce the risk of secondary malignancies. The exact role of chemotherapy has yet to be determined. Reports on the efficacy of chemotherapy vary as some report lower effects in NF1 populations. Promisingly, survival seems to ameliorate in the last few decades and response rates of chemotherapy may increase in NF1 populations when administering it as part of standard of care. However, in metastasized disease, response rates remain poor. New systemic therapies are therefore desperately warranted and multiple trials are currently investigating the role of drugs. Targeted drugs are nevertheless not yet included in first line treatment. Conclusion: Both research and clinical efforts benefit from multidisciplinary approaches with international collaborations in this rare malignancy

    The Impact of Age on Outcome of Embryonal and Alveolar Rhabdomyosarcoma Patients.:A Multicenter Study

    Get PDF
    Background: The prognosis of rhabdomyosarcoma (RMS) in children and adolescents has improved since the introduction of multi-agent chemotherapy. However, outcome data of adults with RMS are scarce. This multicenter retrospective study investigated the effect of age on outcome of RMS. Patients and Methods: Data were collected from three Dutch University Medical Centers between 1977-2009. The effect of age and clinical prognostic factors on relapse-free and disease-specific survival (DSS) were analyzed. Results: Age as a continuous variable predicted poor survival in multivariate analysis. Five-year DSS was highest for non-metastatic embryonal RMS, followed by non-metastatic alveolar RMS and was poor in metastatic disease. Higher age correlated with unfavorable histological subtype (alveolar RMS) and with metastatic disease at presentation in embryonal RMS. In non-metastatic embryonal RMS and in all alveolar RMS, higher age was an adverse prognostic factor of outcome. Conclusion: This study indicates that age is a negative predictor of survival in patients with embryonal and alveolar RMS

    Prognostic Factors in Epithelioid Hemangioendothelioma: Analysis of a Nationwide Molecularly/Immunohistochemically Confirmed Cohort of 57 Cases

    Get PDF
    Epithelioid hemangioendothelioma (EHE) is an extremely rare vascular sarcoma with variable aggressive clinical behavior. In this retrospective study, we aimed to investigate prognostic factors based on clinicopathologic findings in a molecularly/immunohistochemically confirmed nationwide multicenter cohort of 57 EHE cases. Patients had unifocal disease (n = 29), multifocal disease (n = 5), lymph node metastasis (n = 8) and/or distant metastasis (n = 15) at the time of diagnosis. The overall survival rate was 71.4% at 1 year and 50.7% at 5 years. Survival did not correlate with sex, age or histopathological parameters. No survival differences were observed between multifocal and metastatic disease, suggesting that multifocality represents early metastases and treatment options are limited in comparison to unifocal disease. In unifocal tumors, survival could be predicted using the risk stratification model of Shibayama et al., dividing the cases into low- (n = 4), intermediate- (n = 15) and high- (n = 3) risk groups. No clinical or histopathological parameters were associated with progressive unifocal disease course. Lymph node metastases at the time of diagnosis occurred in 14.0% of the cases and were mainly associated with tumor localization in the head and neck area, proposing lymph node dissection. In conclusion, our results demonstrate the aggressive behavior of EHE, emphasize the prognostic value of a previously described risk stratification model and may provide new insights regarding tumor focality, therapeutic strategies and prognosis

    Collective cancer invasion forms an integrin-dependent radioresistant niche

    Get PDF
    Cancer fatalities result from metastatic dissemination and therapy resistance, both processes that depend on signals from the tumor microenvironment. To identify how invasion and resistance programs cooperate, we used intravital microscopy of orthotopic sarcoma and melanoma xenografts. We demonstrate that these tumors invade collectively and that, specifically, cells within the invasion zone acquire increased resistance to radiotherapy, rapidly normalize DNA damage, and preferentially survive. Using a candidate-based approach to identify effectors of invasion-associated resistance, we targeted beta 1 and alpha V beta 3/beta 5 integrins, essential extracellular matrix receptors in mesenchymal tumors, which mediate cancer progression and resistance. Combining radiotherapy with beta 1 or alpha V integrin monotargeting in invading tumors led to relapse and metastasis in 40-60% of the cohort, in line with recently failed clinical trials individually targeting integrins. However, when combined, anti-beta 1/alpha V integrin dual targeting achieved relapse-free radiosensitization and prevented metastatic escape. Collectively, invading cancer cells thus withstand radiotherapy and DNA damage by beta 1/alpha V beta 3/beta 5 integrin cross-talk, but efficient radiosensitization can be achieved by multiple integrin targeting

    Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases

    Get PDF
    Background: Histone 3.3 (H3.3) hotspot mutations in bone tumors occur in the vast majority of giant cell tumors of bone (GCTBs; 96%), chondroblastomas (95%) and in a few cases of osteosarcomas. However, clinical presentation, histopathological features, and additional molecular characteristics of H3.3 mutant osteosarcomas are largely unknown. Methods: In this multicentre, retrospective study, a total of 106 conventional high-grade osteosarcomas, across all age groups were re-examined for hotspot mutations in the H3.3 coding genes H3F3A and H3F3B. H3.3 mutant osteosarcomas were re-evaluated in a multidisciplinary manner and analyzed for genome-wide DNA-methylation patterns and DNA copy number aberrations alongside H3.3 wild-type osteosarcomas and H3F3A G34W/L mutant GCTBs. Results: Six osteosarcomas (6/106) carried H3F3A hotspot mutations. No mutations were found in H3F3B. All patients with H3F3A mutant osteosarcoma were older than 30 years with a median age of 65 years. Copy number aberrations that are commonly encountered in high-grade osteosarcomas also occurred in H3F3A mutant osteosarcomas. Unlike a single osteosarcoma with a H3F3A K27M mutation, the DNA methylation profiles of H3F3A G34W/R mutant osteosarcomas were clearly different from H3.3 wild-type osteosarcomas, but more closely related to GCTBs. The most differentially methylated promoters between H3F3A G34W/R mutant and H3.3 wild-type osteosarcomas were in KLLN/PTEN (p < 0.00005) and HIST1H2BB (p < 0.0005). Conclusions: H3.3 mutations in osteosarcomas may occur in H3F3A at mutational hotspots. They are overall rare, but become more frequent in osteosarcoma patients older than 30 years. Osteosarcomas carrying H3F3A G34W/R mutations are associated with epigenetic dysregulation of KLLN/PTEN and HIST1H2BB

    Small cell osteosarcoma versus fusion-driven round cell sarcomas of bone: retrospective clinical, radiological, pathological, and (epi)genetic comparison with clinical implications

    Get PDF
    Small cell osteosarcoma (SCOS), a variant of conventional high-grade osteosarcoma (COS), may mimic fusion-driven round cell sarcomas (FDRCS) by overlapping clinico-radiological and histomorphological/immunohistochemical characteristics, hampering accurate diagnosis and consequently proper therapy. We retrospectively analyzed decalcified formalin-fixed paraffin-embedded (FFPE) samples of 18 bone tumors primarily diagnosed as SCOS by methylation profiling, fusion gene analysis, and immunohistochemistry. In eight cases, the diagnosis of SCOS was maintained, and in 10 cases it was changed into FDRCS, including three Ewing sarcomas (EWSR1::FLI1 in two cases and no identified fusion gene in the third case), two sarcomas with BCOR alterations (KMT2D::BCOR, CCNB3::BCOR, respectively), three mesenchymal chondrosarcomas (HEY1::NCOA2 in two cases and one case with insufficient RNA quality), and two sclerosing epithelioid fibrosarcomas (FUS::CREBL3 and EWSR1 rearrangement, respectively). Histologically, SCOS usually possessed more pleomorphic cells in contrast to the FDRCS showing mainly monomorphic cellular features. However, osteoid was seen in the latter tumors as well, often associated with slight pleomorphism. Also, the immunohistochemical profile (CD99, SATB2, and BCOR) overlapped. Clinically and radiologically, similarities between SCOS and FDRCS were observed, with by imaging only minimal presence or lack of (mineralized) osteoid in most of the SCOSs. In conclusion, discrimination of SCOS, epigenetically related to COS, versus FDRCS of bone can be challenging but is important due to different biology and therefore therapeutic strategies. Methylation profiling is a reliable and robust diagnostic test especially on decalcified FFPE material. Subsequent fusion gene analysis and/or use of specific immunohistochemical surrogate markers can be used to substantiate the diagnosis

    Survival after resection of malignant peripheral nerve sheath tumors:Introducing and validating a novel type-specific prognostic model

    Get PDF
    Background: This study aimed to assess the performance of currently available risk calculators in a cohort of patients with malignant peripheral nerve sheath tumors (MPNST) and to create an MPNST-specific prognostic model including type-specific predictors for overall survival (OS). Methods: This is a retrospective multicenter cohort study of patients with MPNST from 11 secondary or tertiary centers in The Netherlands, Italy and the United States of America. All patients diagnosed with primary MPNST who underwent macroscopically complete surgical resection from 2000 to 2019 were included in this study. A multivariable Cox proportional hazard model for OS was estimated with prespecified predictors (age, grade, size, NF-1 status, triton status, depth, tumor location, and surgical margin). Model performance was assessed for the Sarculator and PERSARC calculators by examining discrimination (C-index) and calibration (calibration plots and observed-expected statistic; O/E-statistic). Internal-external cross-validation by different regions was performed to evaluate the generalizability of the model. Results: A total of 507 patients with primary MPNSTs were included from 11 centers in 7 regions. During follow-up (median 8.7 years), 211 patients died. The C-index was 0.60 (95% CI 0.53-0.67) for both Sarculator and PERSARC. The MPNST-specific model had a pooled C-index of 0.69 (95%CI 0.65-0.73) at validation, with adequate discrimination and calibration across regions. Conclusions: The MPNST-specific MONACO model can be used to predict 3-, 5-, and 10-year OS in patients with primary MPNST who underwent macroscopically complete surgical resection. Further validation may refine the model to inform patients and physicians on prognosis and support them in shared decision-making.</p

    NR4A3 rearrangement reliably distinguishes between the clinicopathologically overlapping entities myoepithelial carcinoma of soft tissue and cellular extraskeletal myxoid chondrosarcoma

    Get PDF
    Myoepithelial carcinoma of soft tissue (MEC) and cellular extraskeletal myxoid chondrosarcoma (cEMC) share striking similarities. In this paper, we compare ten MECs with five cEMCs. MEC patients had an equal gender distribution. The age range was 15–76 years (mean, 42 years). Tumours were located on extremities, pelvic girdle, vulva and neck. Follow-up, available for nine patients, ranged from 4 to 85 months (mean, 35 months). Five patients were alive without evidence of disease, two were alive with disease and two died 8 months after the initial diagnosis. cEMCs were from three males and two females with an age range of 37–82 years (mean, 57 years); they presented in extremities, shoulder and paravertebral/cervical. Follow-up, available for four patients, ranged from 6 to 220 months (mean, 61 months). All patients were alive, two with recurrences and/or metastases and two without evidence of disease. Morphologically, the distinction between these two entities was difficult since all cases exhibited features typically seen in myoepithelial tumours. Immunohistochemically, MECs expressed pan-keratin (80 %), epithelial membrane antigen (EMA; 57 %), S100 (50 %), alpha-smooth muscle actin (ASMA; 75 %), calponin (67 %) and p63 (25 %). S100 and EMA were expressed in 40 % of cEMC cases respectively with additional immunoreactivity for p63, ASMA and glial fibrillary acidic protein in one case. Pan-keratin was negative in all neoplasms. NR4A3 rearrangement was present in four of four cEMCs and in none of the MECs. In contrast, three of nine (33 %) MECs and four of five (80 %) cEMCs showed an EWSR1 rearrangement. In summary, MECs and cEMCs share clinical, morphological, immunohistochemical and genetic characteristics. The pathognomic rearrangement of NR4A3 is a useful diagnostic feature in identifying cEMCs

    Genome-wide methylation profiling and copy number analysis in atypical fibroxanthomas and pleomorphic dermal sarcomas indicate a similar molecular phenotype

    Get PDF
    Background: Atypical fibroxanthomas (AFX) and pleomorphic dermal sarcomas (PDS) are lesions of the skin with overlapping histologic features and unspecific molecular traits. PDS behaves aggressive compared to AFX. Thus, a precise delineation, although challenging in some instances, is relevant. Methods: We examined the value of DNA-methylation profiling and copy number analysis for separating these tumors. DNA-methylation data were generated from 17 AFX and 15 PDS using the Illumina EPIC array. These were compared with DNA-methylation data generated from 196 tumors encompassing potential histologic mimics like cutaneous squamous carcinomas (cSCC; n = 19), basal cell carcinomas (n = 10), melanoma metastases originating from the skin (n = 11), leiomyosarcomas (n = 11), angiosarcomas of the skin and soft tissue (n = 11), malignant peripheral nerve sheath tumors (n = 19), dermatofibrosarcomas protuberans (n = 13), extraskeletal myxoid chondrosarcomas (n = 9), myxoid liposarcomas (n = 14), schwannomas (n = 10), neurofibromas (n = 21), alveolar (n = 19) and embryonal (n = 17) rhabdomyosarcomas as well as undifferentiated pleomorphic sarcomas (n = 12). Results: DNA-methylation profiling did not separate AFX from PDS. The DNA-methylation profiles of the other cases, however, were distinct from AFX/PDS. They reliably assigned to subtype-specific DNA-methylation clusters, although overlap occurred between some AFX/PDS and cSCC. Copy number profiling revealed alterations in a similar frequency and distribution between AFX and PDS. They involved losses of 9p (22/32) and 13q (25/32). Gains frequently involved 8q (8/32). Notably, a homozygous deletion of CDKN2A was more frequent in PDS (6/15) than in AFX (2/17), whereas amplifications were non-recurrent and overall rare (5/32). Conclusions: Our findings support the concept that AFX and PDS belong to a common tumor spectrum. We could demonstrate the diagnostic value of DNA-methylation profiling to delineating AFX/PDS from potential mimics. However, the assessment of certain histologic features remains crucial for separating PDS from AFX
    • …
    corecore