42 research outputs found
Linear-scaling explicitly correlated treatment of solids: Periodic local MP2-F12 method
Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals
Hybrid RPA:DFT Approach for Adsorption on Transition Metal Surfaces: Methane and Ethane on Platinum (111)
The hybrid QM:QM approach is extended to adsorption on transition metal surfaces. The random phase approximation (RPA) as the high-level method is applied to cluster models and, using the subtractive scheme, embedded in periodic models which are treated with density functional theory (DFT) that is the low-level method. The PBE functional, both without dispersion and augmented with the many-body dispersion (MBD), is employed. Adsorption of methane and ethane on the Pt(111) surface is studied. For methane in a 2 × 2 surface cell, the hybrid RPA:PBE and RPA:PBE+MBD results, −14.3 and −16.0 kJ mol–1, respectively, are in close agreement with the periodic RPA value of −13.8 kJ mol–1 at significantly reduced computational cost (factor of ∼50). For methane and ethane, the RPA:PBE results (−14.3 and −17.8 kJ mol–1, respectively) indicate underbinding relative to energies derived from experimental desorption barriers for relevant loadings (−15.6 ± 1.6 and −27.2 ± 2.9 kJ mol–1, respectively), whereas the hybrid RPA:PBE+MBD results (−16.0 and −24.9 kJ mol–1, respectively) agree with the experiment well within experimental uncertainty limits (deviation of −0.4 ± 1.5 and +2.3 ± 2.9 kJ mol–1, respectively). Finding a cluster that adequately and robustly represents the adsorbate at the bulk surface is important for the success of the RPA-based QM:QM scheme for metals.Norddeutscher Verbund f?r Hoch- und H?chstleistungsrechnen
10.13039/100030685Norddeutscher Verbund f?r Hoch- und H?chstleistungsrechnen
10.13039/100030685Deutsche Forschungsgemeinschaft
10.13039/501100001659Fonds der Chemischen Industrie
10.13039/100018992Peer Reviewe
On the physisorption of water on graphene: a CCSD(T) study
The electronic structure of the zero-gap two-dimensional graphene has a charge neutrality point exactly at the Fermi level that limits the practical application of this material. There are several ways to modify the Fermi-level-region of graphene, e.g. adsorption of graphene on different substrates or different molecules on its surface. In all cases the so-called dispersion or van der Waals interactions can play a crucial role in the mechanism, which describes the modification of electronic structure of graphene. The adsorption of water on graphene is not very accurately reproduced in the standard density functional theory (DFT) calculations and highly-accurate quantum-chemical treatments are required. A possibility to apply wavefunction-based methods to extended systems is the use of local correlation schemes. The adsorption energies obtained in the present work by means of CCSD(T) are much higher in magnitude than the values calculated with standard DFT functional although they agree that physisorption is observed. The obtained results are compared with the values available in the literature for binding of water on the graphene-like substrates.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Efficient and accurate treatment of weak pairs in local CCSD(T) calculations
Local coupled cluster theory is based on (i) a restriction of the list of pairs (or triples) of occupied molecular orbitals, and (ii) a truncation of the virtual space to orbital pair (or triple) specific subspaces. The latter is motivated by an exponential decay of the contributions to the pair energy with respect to the distance between related local occupied and virtual orbitals; the former only by a polynomial R −6 decay with respect to the distance R between the two occupied orbitals of the pair. Consequently, the restriction of the pair list is more critical, and contributions of pairs should not be neglected unless the corresponding interorbital distance is really large. In local coupled cluster theory pairs are usually discriminated on the basis of the interorbital distance, or the size of the 2nd order Møller-Plesset perturbation theory (MP2) estimate of the pair energy. Only strong pairs are treated at the full coupled cluster level, while weak pairs are treated just at the level of MP2. Yet MP2 might be problematic in certain cases, for example, π-stacking is badly described by MP2, etc. We propose to substitute the MP2 treatment of weak pairs by an approach based on ring-CCD by including third-order diagrams with R −6 decay behavior. Such an approach is clearly superior; it provides higher accuracy, while the computational cost is not significantly higher than that of a MP2 based treatment of weak pairs
Range-separated double-hybrid density-functional theory applied to periodic systems
International audienceQuantum chemistry methods exploiting density-functional approximations for short-range electron-electron interactions and second-order M{{\o}}ller-Plesset (MP2) perturbation theory for long-range electron-electron interactions have been implemented for periodic systems using Gaussian-type basis functions and the local correlation framework. The performance of these range-separated double hybrids has been benchmarked on a significant set of systems including rare-gas, molecular, ionic, and covalent crystals. The use of spin-component-scaled MP2 for the long-range part has been tested as well. The results show that the value of = 0.5 bohr^{--1} for the range-separation parameter usually used for molecular systems is also a reasonable choice for solids. Overall, these range-separated double hybrids provide a good accuracy for binding energies using basis sets of moderate sizes such as cc-pVDZ and aug-cc-pVDZ