18 research outputs found

    Detections of [C II] 158 μ\mum and [O III] 88 μ\mum in a Local Lyman Continuum Emitter, Mrk 54, and its Implications to High-redshift ALMA Studies

    Full text link
    We present integral field, far-infrared (FIR) spectroscopy of Mrk 54, a local Lyman Continuum Emitter (LCE), obtained with FIFI-LS on the Stratospheric Observatory for Infrared Astronomy. This is only the second time, after Haro 11, that [C II] 158 μ\mum and [O III] 88 μ\mum spectroscopy of the known LCEs have been obtained. We find that Mrk 54 has a strong [C II] emission that accounts for 1\sim1% of the total FIR luminosity, whereas it has only moderate [O III] emission, resulting in the low [O III]/[C II] luminosity ratio of 0.22±0.060.22\pm0.06. In order to investigate whether [O III]/[C II] is a useful tracer of fescf_{\rm esc} (LyC escape fraction), we examine the correlations of [O III]/[C II] and (i) the optical line ratio of O32\rm O_{32} \equiv [O III] 5007 \AA/[O II] 3727 \AA, (ii) specific star formation rate, (iii) [O III] 88 μ\mum/[O I] 63 μ\mum ratio, (iv) gas phase metallicity, and (v) dust temperature based on a combined sample of Mrk 54 and the literature data from the Herschel Dwarf Galaxy Survey and the LITTLE THINGS Survey. We find that galaxies with high [O III]/[C II] luminosity ratios could be the result of high ionization (traced by O32\rm O_{32}), bursty star formation, high ionized-to-neutral gas volume filling factors (traced by [O III] 88 μ\mum/[O I] 63 μ\mum), and low gas-phase metallicities, which is in agreement with theoretical predictions. We present an empirical relation between the [O III]/[C II] ratio and fescf_{\rm esc} based on the combination of the [O III]/[C II] and O32\rm O_{32} correlation, and the known relation between O32\rm O_{32} and fescf_{\rm esc}. The relation implies that high-redshift galaxies with high [O III]/[C II] ratios revealed by ALMA may have fesc0.1f_{\rm esc}\gtrsim0.1, significantly contributing to the cosmic reionization.Comment: 14 pages, 5 figures, Accepted for publication in Ap

    Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

    Get PDF
    Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized

    Four‐dimensional‐STEM analysis of the phyllosilicate‐rich matrix of Ryugu samples

    Get PDF
    Ryugu asteroid grains brought back to the Earth by the Hayabusa2 space mission are pristine samples containing hydrated minerals and organic compounds. Here, we investigate the mineralogy of their phyllosilicate-rich matrix with four-dimensional scanning transmission electron microscopy (4D-STEM). We have identified and mapped the mineral phases at the nanometer scale (serpentine, smectite, pyrrhotite), observed the presence of Ni-bearing pyrrhotite, and identified the serpentine polymorph as lizardite, in agreement with the reported aqueous alteration history of Ryugu. Furthermore, we have mapped the d-spacings of smectite and observed a broad distribution of values, ranging from 1 to 2 nm, with an average d-spacing of 1.24 nm, indicating significant heterogeneity within the sample. Such d-spacing variability could be the result of either the presence of organic matter trapped in the interlayers or the influence of various geochemical conditions at the submicrometer scale, suggestive of a range of organic compounds and/or changes in smectite crystal chemistry

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Extracellular Vesicle-Mediated Secretion of Protochlorophyllide in the Cyanobacterium <i>Leptolyngbya boryana</i>

    No full text
    Protochlorophyllide (Pchlide) reduction in the late stage of chlorophyll a (Chl) biosynthesis is catalyzed by two enzymes: light-dependent Pchlide oxidoreductase (LPOR) and dark-operative Pchlide oxidoreductase (DPOR). The differential operation of LPOR and DPOR enables a stable supply of Chl in response to changes in light conditions and environmental oxygen levels. When a DPOR-deficient mutant (YFC2) of the cyanobacterium Leptolyngbya boryana is grown heterotrophically in the dark, Pchlide accumulates in the cells and is secreted into the culture medium. In this study, we demonstrated the extracellular vesicle-mediated secretion of Pchlide. Pchlide fractions were isolated from the culture medium using sucrose density gradient centrifugation. Mass spectrometry analysis revealed that the Pchlide fractions contained porin isoforms, TolC, and FG-GAP repeat-containing protein, which are localized in the outer membrane. Transmission electron microscopy revealed extracellular vesicle-like structures in the vicinity of YFC2 cells and the Pchlide fractions. These findings suggested that the Pchlide secretion is mediated by extracellular vesicles in dark-grown YFC2 cells

    RIOJA I. The core of the highest redshift galaxy overdensity at z=7.88z= 7.88 confirmed by NIRSpec/JWST

    Full text link
    The proto-clusters in the epoch of reionization, traced by galaxies overdensity regions, are ideal laboratories to study the process of stellar assembly and cosmic reionization. We present the spectroscopic confirmation of the core of the most distant proto-cluster at z=7.88z = 7.88, A2744-z7p9OD, with the James Webb Space Telescope NIRSpec integral field unit spectroscopy. The core region includes as many as 4 galaxies detected in [O III] 4960 A and 5008 A in a small area of 3"×3"\sim 3" \times 3", corresponding to \sim 11 kpc ×\times 11 kpc. Three member galaxies are also tentatively detected in dust continuum in ALMA Band 6, which is consistent with their red ultraviolet continuum slopes, β1.3\beta \sim -1.3. The member galaxies have stellar masses in the range of log(M/MM_{*}/M_{\rm \odot}) 7.69.2\sim 7.6-9.2 and star formation rates of 350\sim 3-50 MM_{\rm \odot} yr1^{-1}, showing a diversity in their properties. FirstLight cosmological simulations reproduce the physical properties of the member galaxies including the stellar mass, [OIII] luminosity, and dust-to-stellar mass ratio, and predict that the member galaxies are on the verge of merging in a few to several tens Myr to become a large galaxy with M6×109MM_{\rm *}\sim 6\times10^{9} M_{\rm \odot}. The presence of a multiple merger and evolved galaxies in the core region of A2744-z7p9OD indicates that environmental effects are already at work 650 Myr after the Big Bang.Comment: 10 pages, 4 figures, 1 table, submitted to ApJ
    corecore