923 research outputs found

    Strength diagrams of fibrous composites with unidirectional structure

    Get PDF
    The dependence of the composite strength on the volume proportion of fiber and the transfer factor is analyzed. Four types of diagrams are constructed for the strength of composites as a function of the volume proportion of fibers and the transfer factor

    AC induced damping of a fluxon in long Josephson junction

    Full text link
    We present a theoretical and experimental study of Josephson vortex (fluxon) moving in the presence of spatially homogeneous dc and ac bias currents. By mapping this problem to the problem of calculating the current-voltage characteristic of a small Josephson junction, we derive the dependence of the average fluxon velocity on the dc bias current. In particular we find that the low frequency ac bias current results in an additional nonlinear damping of fluxon motion. Such ac induced damping crucially depends on the intrinsic damping parameter and increases drastically as this parameter is reduced. We find a good agreement of the analysis with both the direct numerical simulations and the experimentally measured current-voltage characteristics of a long annular Josephson junction with one trapped fluxon.Comment: Physical Review B, in pres

    Microwave-induced flow of vortices in long Josephson junctions

    Full text link
    We report experimental and numerical study of microwave-induced flow of vortices in long Josephson junctions at zero dc magnetic field. Our intriguing observation is that applying an ac-bias of a small frequency ffpf \ll f_p and sufficiently large amplitude changes the current-voltage characteristics (II-VV curve) of the junction in a way similar to the effect of dc magnetic field, well known as the flux-flow behavior. The characteristic voltage VV of this low voltage branch increases with the power PP of microwave radiation as VsPαV_{s}\propto P^{\alpha} with the index α0.5\alpha \simeq 0.5 . Experiments using a low-temperature laser scanning microscope unambiguously indicate the motion of Josephson vortices driven by microwaves. Numerical simulations agree with the experimental data and show strongly {\it irregular} vortex motion. We explain our results by exploiting an analogy between the microwave-induced vortex flow in long Josephson junctions and incoherent multi-photon absorption in small Josephson junctions in the presence of large thermal fluctuations. In the case of long Josephson junctions the spatially-temporal chaos in the vortex motion mimics the thermal fluctuations. In accordance with this analogy, a control of the intensity of chaos in a long junction by changing its damping constant leads to a pronounced change in the shape of the II-VV curve. Our results provide a possible explanation to previously measured but not yet understood microwave-driven properties of intrinsic Josephson junctions in high-temperature superconductors.Comment: 8 pages, 13 figure

    Spatial and frequency dependencies of local photoresponse of HTS strip-line resonator in regime of two-tone microwave intermodulation excitation

    Full text link
    A new phenomenological approach to spatially-resolved research of nonlinear (NL) microwave properties of operating thin-film superconducting resonators is proposed. The approach is based on frequency and spatial singularity of Laser Scanning Microscopy (LSM) images that can be extracted from a set of 2-D patterns representing x-y distribution of the LSM photoresponse, PR(x, y), at fixed third-order intermodulation (IMD) frequencies 2f1-f2 and 2f2-f1 as a result of two-tone resonator microwave excitation at equidistant frequencies f1 and f2 relative to the fundamental resonance, f0. It was shown by us earlier that the total LSM PR(x, y) originates from two independent (resistive, PRR(x, y), and inductive, PRX(x, y)) contributions which can be extracted directly from the LSM images acquired at f1 and f2 by using a method of spatially-resolved complex impedance partition [1]. Here, we show that practically the same manipulation of LSM images at 2f1-f2 and 2f2-f1 can be used to present NL components of IMD LSM PR(x, y) in terms of its independent spatial variations of (i) inductive IMD_IND(x, y) and (ii) resistive IMD_RES(x, y) contributions reflecting the origin of the local sources of microwave NL. [1] A.P. Zhuravel, S.M. Anlage, and A.V. Ustinov, Appl. Phys. Lett., vol. 88, p. 212503, 2006.Comment: 3 pages, 4 figures, submitted to the Seventh International Kharkov Symposium (MSMW'10) Proceeding

    Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices

    Full text link
    The technique of low-temperature Laser Scanning Microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa2Cu3O7/LaAlO3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analyzed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation currents on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.Comment: 4 pages, 6 figures, 2-column format,submitted for the 2006 Applied Superconductivity Conferenc

    Quantum dissociation of a vortex-antivortex pair in a long Josephson junction

    Full text link
    We report a theoretical analysis and experimental observation of the quantum dynamics of a single vortex-antivortex (VAV) pair confined in a long narrow annular Josephson junction. The switching of the junction from the superconducting state to the resistive state occurs via the dissociation of a pinned VAV pair. The pinning potential is controlled by external magnetic field HH and dc bias current II. We predict a specific magnetic field dependence of the oscillatory energy levels of the pinned VAV state and the crossover to a {\it macroscopic quantum tunneling} mechanism of VAV dissociation at low temperatures. Our analysis explains the experimentally observed {\it increase} of the width of the switching current distribution P(I)P(I) with HH and the crossover to the quantum regime at the temperature of about 100 mK.Comment: 4 pages, 3 figure
    corecore