research

Quantum dissociation of a vortex-antivortex pair in a long Josephson junction

Abstract

We report a theoretical analysis and experimental observation of the quantum dynamics of a single vortex-antivortex (VAV) pair confined in a long narrow annular Josephson junction. The switching of the junction from the superconducting state to the resistive state occurs via the dissociation of a pinned VAV pair. The pinning potential is controlled by external magnetic field HH and dc bias current II. We predict a specific magnetic field dependence of the oscillatory energy levels of the pinned VAV state and the crossover to a {\it macroscopic quantum tunneling} mechanism of VAV dissociation at low temperatures. Our analysis explains the experimentally observed {\it increase} of the width of the switching current distribution P(I)P(I) with HH and the crossover to the quantum regime at the temperature of about 100 mK.Comment: 4 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020